Suppr超能文献

基于信息融合理论,利用元启发式算法识别用于检测支气管源性癌分期的候选生物标志物。

Identifying candidate biomarkers for detecting bronchogenic carcinoma stages using metaheuristic algorithms based on information fusion theory.

作者信息

Khalvati Bagher, Kavousi Kaveh, Keyhanipour Amir Hosein, Arabfard Masoud

机构信息

Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran.

Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.

出版信息

Discov Oncol. 2025 Apr 29;16(1):632. doi: 10.1007/s12672-025-02395-5.

Abstract

OBJECTIVE

Invasive lung cancer staging poses significant challenges, often requiring painful and costly biopsy procedures. This study aims to identify non-invasive biomarkers for detecting bronchogenic carcinoma and its various stages by analyzing gene expression data using bioinformatics and machine learning techniques. By leveraging these advanced computational methods, we seek to eliminate the need for surgical intervention in the diagnostic process.

METHODS

We utilized the TCGA-LUAD dataset, including gene expression data from healthy and cancerous samples. To identify robust biomarkers, we applied eight metaheuristic algorithms for feature selection, combined with four classification methods and two data fusion techniques to optimize performance.

RESULTS

Our approach achieved 100% accuracy in distinguishing healthy samples from cancerous ones, outperforming existing methods that reported 97% accuracy. Notably, while prior methods have struggled to separate bronchogenic carcinoma stages effectively, our research achieved an approximate accuracy of 77% in stage classification. Furthermore, using gene enrichment methods, we identified 5, 7, and 16 diagnostic biomarker candidates for stages I, II, III, and IV, respectively.

CONCLUSION

This study demonstrates that integrating bioinformatics, gene set enrichment, and biological pathway analysis can enable non-invasive diagnostics for bronchogenic carcinoma stages. These findings hold promise for developing alternatives to traditional, invasive staging systems, potentially improving patient outcomes and reducing healthcare costs.

摘要

目的

侵袭性肺癌分期面临重大挑战,通常需要进行痛苦且昂贵的活检程序。本研究旨在通过使用生物信息学和机器学习技术分析基因表达数据,识别用于检测支气管源性癌及其各个阶段的非侵入性生物标志物。通过利用这些先进的计算方法,我们试图在诊断过程中消除手术干预的必要性。

方法

我们使用了TCGA-LUAD数据集,其中包括来自健康和癌组织样本的基因表达数据。为了识别强大的生物标志物,我们应用了八种元启发式算法进行特征选择,并结合四种分类方法和两种数据融合技术来优化性能。

结果

我们的方法在区分健康样本和癌组织样本方面达到了100%的准确率,优于现有方法所报告的97%的准确率。值得注意的是,虽然先前的方法难以有效区分支气管源性癌的各个阶段,但我们的研究在阶段分类中达到了约77%的准确率。此外,通过基因富集方法,我们分别为I期、II期、III期和IV期确定了5个、7个和16个诊断生物标志物候选物。

结论

本研究表明,整合生物信息学、基因集富集和生物途径分析能够实现支气管源性癌各阶段的非侵入性诊断。这些发现有望开发出传统侵入性分期系统的替代方法,可能改善患者预后并降低医疗成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eeb/12040789/253943ae2110/12672_2025_2395_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验