Suppr超能文献

评估公共知识库中已精心整理的生物途径的预测准确性。

Evaluating the predictive accuracy of curated biological pathways in a public knowledgebase.

机构信息

Adaptive Oncology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 500, Toronto, ON M5G 0A3, Canada.

Department of Molecular Genetics, University of Toronto, Room 4396, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A1, Canada.

出版信息

Database (Oxford). 2022 Mar 28;2022. doi: 10.1093/database/baac009.

Abstract

ABSTRACT

Reactome is a database of human biological pathways manually curated from the primary literature and peer-reviewed by experts. To evaluate the utility of Reactome pathways for predicting functional consequences of genetic perturbations, we compared predictions of perturbation effects based on Reactome pathways against published empirical observations. Ten cancer-relevant Reactome pathways, representing diverse biological processes such as signal transduction, cell division, DNA repair and transcriptional regulation, were selected for testing. For each pathway, root input nodes and key pathway outputs were defined. We then used pathway-diagram-derived logic graphs to predict, either by inspection by biocurators or using a novel algorithm MP-BioPath, the effects of bidirectional perturbations (upregulation/activation or downregulation/inhibition) of single root inputs on the status of key outputs. These predictions were then compared to published empirical tests. In total, 4968 test cases were analyzed across 10 pathways, of which 847 were supported by published empirical findings. Out of the 847 test cases, curators' predictions agreed with the experimental evidence in 670 and disagreed in 177 cases, resulting in ∼81% overall accuracy. MP-BioPath predictions agreed with experimental evidence for 625 and disagreed for 222 test cases, resulting in ∼75% overall accuracy. The expected accuracy of random guessing was 33%. Per-pathway accuracy did not correlate with the number of pathway edges nor the number of pathway nodes but varied across pathways, ranging from 56% (curator)/44% (MP-BioPath) for 'Mitotic G1 phase and G1/S transition' to 100% (curator)/94% (MP-BioPath) for 'RAF/MAP kinase cascade'. This study highlights the potential of pathway databases such as Reactome in modeling genetic perturbations, promoting standardization of experimental pathway activity readout and supporting hypothesis-driven research by revealing relationships between pathway inputs and outputs that have not yet been directly experimentally tested.

DATABASE URL

www.reactome.org.

摘要

摘要

Reactome 是一个数据库,其中包含了人类生物途径,这些途径是通过对原始文献的人工整理,并由专家进行同行评审而获得的。为了评估 Reactome 途径在预测遗传扰动的功能后果方面的效用,我们比较了基于 Reactome 途径的扰动效应预测与已发表的经验观察结果。选择了十个与癌症相关的 Reactome 途径进行测试,这些途径代表了多种生物学过程,如信号转导、细胞分裂、DNA 修复和转录调控等。对于每个途径,定义了根输入节点和关键途径输出。然后,我们使用途径图衍生的逻辑图,通过生物注释者的检查或使用一种新的算法 MP-BioPath,预测单个根输入的双向扰动(上调/激活或下调/抑制)对关键输出状态的影响。然后将这些预测与已发表的经验测试进行比较。在总共 10 个途径中分析了 4968 个测试案例,其中 847 个得到了已发表的经验证据的支持。在这 847 个测试案例中,注释者的预测与实验证据在 670 个案例中一致,在 177 个案例中不一致,总体准确率约为 81%。MP-BioPath 的预测与实验证据一致的有 625 个,不一致的有 222 个,总体准确率约为 75%。随机猜测的预期准确率为 33%。途径准确性与途径边数和途径节点数无关,但因途径而异,范围从“有丝分裂 G1 期和 G1/S 过渡”的 56%(注释者)/44%(MP-BioPath)到“RAF/MAP 激酶级联”的 100%(注释者)/94%(MP-BioPath)。这项研究强调了像 Reactome 这样的途径数据库在模拟遗传扰动方面的潜力,通过揭示尚未直接进行实验测试的途径输入和输出之间的关系,促进了实验途径活性读数的标准化,并支持了基于假说的研究。

数据库 URL:www.reactome.org。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd26/9216552/65cad0f926ea/baac009f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验