Suppr超能文献

在器官型三阴性乳腺癌模型中靶向基质-肿瘤 HGF-MET 信号传导的治疗。

Therapeutic Targeting of Stromal-Tumor HGF-MET Signaling in an Organotypic Triple-Negative Breast Tumor Model.

机构信息

Department of Biomedical Engineering, The University of Akron, Akron, Ohio.

Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio.

出版信息

Mol Cancer Res. 2022 Jul 6;20(7):1166-1177. doi: 10.1158/1541-7786.MCR-21-0317.

Abstract

UNLABELLED

The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor-stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor-stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor-stromal interactions in TNBC toward the goal of developing targeted therapies against the TME.

IMPLICATIONS

Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target.

摘要

未加标签

肿瘤微环境(TME)促进癌细胞的增殖、耐药性和侵袭性。针对 TME 的治疗性靶向是改善患者预后的一种有吸引力的策略,特别是在三阴性乳腺癌(TNBC)等侵袭性癌症中,其基质丰富,靶向治疗有限。然而,缺乏用于机械理解肿瘤-基质相互作用的临床前人类肿瘤模型一直是确定针对 TME 的有效治疗方法的障碍。为了解决这一需求,我们开发了一种三维器官型肿瘤模型,用于研究患者来源的癌症相关成纤维细胞(CAF)与 TNBC 细胞的相互作用,并探索潜在的治疗靶点。我们发现 CAF 主要分泌肝细胞生长因子(HGF)并激活 TNBC 细胞中的 MET 受体酪氨酸激酶。这种肿瘤-基质相互作用促进了 TNBC 细胞的侵袭性、上皮-间充质转化和多种致癌途径的活性。重要的是,我们确定了 TNBC 细胞对单药治疗的耐药性,并建立了一种设计驱动的方法来选择有效的药物组合,以抑制 TNBC 细胞的促转移功能。我们的研究还表明,来自肺成纤维细胞的 HGF 促进了 TNBC 细胞的集落形成,这表明阻断 HGF-MET 信号可能是针对原发性 TNBC 肿瘤发生和肺转移的潜在靶点。总的来说,我们建立了我们的器官型肿瘤模型的实用性,以确定和治疗性靶向 TNBC 中肿瘤-基质相互作用的特定机制,以期针对 TME 开发靶向治疗方法。

含义

利用最先进的器官型肿瘤模型,我们证明了 CAF 介导的 HGF-MET 信号驱动 TNBC 的肿瘤发生活性,并提出了一个治疗靶点。

相似文献

引用本文的文献

2
Approaches to modeling cancer metastasis: from bench to bedside.癌症转移建模方法:从实验室到临床
Front Oncol. 2025 Aug 8;15:1602489. doi: 10.3389/fonc.2025.1602489. eCollection 2025.
8
Automated Analysis of Extracellular Matrix Invasion of Cancer Cells from Tumor Spheroids.肿瘤球体中癌细胞细胞外基质侵袭的自动化分析
ACS Meas Sci Au. 2023 Dec 28;4(3):260-266. doi: 10.1021/acsmeasuresciau.3c00064. eCollection 2024 Jun 19.
9
Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance.用于研究癌症干性介导的耐药性的三维肿瘤模型
Cell Mol Bioeng. 2024 Feb 21;17(2):107-119. doi: 10.1007/s12195-024-00798-y. eCollection 2024 Apr.

本文引用的文献

1
The updated landscape of tumor microenvironment and drug repurposing.肿瘤微环境与药物再利用的更新景观。
Signal Transduct Target Ther. 2020 Aug 25;5(1):166. doi: 10.1038/s41392-020-00280-x.
2
EMT, MET, Plasticity, and Tumor Metastasis.EMT、MET、可塑性和肿瘤转移。
Trends Cell Biol. 2020 Oct;30(10):764-776. doi: 10.1016/j.tcb.2020.07.003. Epub 2020 Aug 13.
4
Three-dimensional models of breast cancer-fibroblasts interactions.乳腺癌-成纤维细胞相互作用的三维模型。
Exp Biol Med (Maywood). 2020 May;245(10):879-888. doi: 10.1177/1535370220917366. Epub 2020 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验