Department of Sciences, John Jay College of Criminal Justice, New York, NY 10019, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, United States.
Department of Sciences, John Jay College of Criminal Justice, New York, NY 10019, United States.
Bioorg Chem. 2022 Jun;123:105744. doi: 10.1016/j.bioorg.2022.105744. Epub 2022 Mar 22.
While interstrand crosslinks (ICLs) have been considered as one type of DNA damage in the past, there is mounting evidence suggesting that these highly cytotoxic lesions are processed differently by the cellular machinery depending upon the ICL structure. In this study, we examined the crosslinking ability of three mitomycins, the structure of the ICLs they produce and the cytotoxicity of the drugs toward three different cell lines. The drugs are: mitomycin C (1), decarbamoylmitomycin C (2), and a mitomycin-conjugate (3) whose mitosane moiety is linked to a N-methylpyrrole carboxamide. We found that, overall, both MC and compound 3 show strong similarities regarding their alkylation of DNA, while DMC alkylating behavior is markedly different. To gain further insight into the mode of action of these drugs, we performed high throughput gene expression and gene ontology analysis to identify gene expression and cellular pathways most impacted by each drug treatment in MCF-7 cell lines. We observed that the novel mitomycin derivative (3) specifically causes changes in the expression of genes encoding proteins involved in cell integrity and tissue structure. Further analysis using bioinformatics (IPA) indicated that the new derivative (3) displays a stronger downregulation of major signaling networks that regulate the cell cycle, DNA damage response and cell proliferation when compared to MC and DMC. Collectively, these findings demonstrate that cytotoxic mechanisms of all three drugs are complex and are not solely related to their crosslinking abilities or the structure of the ICLs they produce.
虽然链间交联(ICLs)过去被认为是一种 DNA 损伤类型,但越来越多的证据表明,这些高度细胞毒性的损伤,根据 ICL 结构,细胞机制对其进行不同的处理。在这项研究中,我们研究了三种丝裂霉素的交联能力、它们产生的 ICL 结构以及这些药物对三种不同细胞系的细胞毒性。这些药物是:丝裂霉素 C(1)、去甲酰丝裂霉素 C(2)和一种丝裂霉素缀合物(3),其米托桑部分与 N-甲基吡咯烷甲酰胺相连。我们发现,总的来说,MC 和化合物 3 在 DNA 的烷基化方面表现出很强的相似性,而 DMC 的烷基化行为则明显不同。为了更深入地了解这些药物的作用机制,我们进行了高通量基因表达和基因本体分析,以确定每种药物在 MCF-7 细胞系中的作用最受影响的基因表达和细胞途径。我们观察到,新型丝裂霉素衍生物(3)特异性地引起参与细胞完整性和组织结构的蛋白质编码基因的表达变化。使用生物信息学(IPA)的进一步分析表明,与 MC 和 DMC 相比,新型衍生物(3)显示出对调节细胞周期、DNA 损伤反应和细胞增殖的主要信号网络的更强下调。总之,这些发现表明,这三种药物的细胞毒性机制是复杂的,并且不仅仅与它们的交联能力或产生的 ICL 结构有关。