Bae Hyojung, Seong Chaewon, Burungale Vishal, Seol Myeongheon, Yoon Chul Oh, Kang Soon Hyung, Jung Wan-Gil, Kim Bong-Joong, Ha Jun-Seok
Optoelectronics Convergence Research Center, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Korea.
School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Korea.
ACS Omega. 2022 Feb 28;7(11):9422-9429. doi: 10.1021/acsomega.1c06720. eCollection 2022 Mar 22.
Solar-to-chemical energy conversion is a potential alternative to fossil fuels. A promising approach is the electrochemical (EC) reduction of CO to value-added chemicals, particularly hydrocarbons. Here, we report on the selective EC reduction of CO to CO on a porous Au nanostructure (pAu) cathode in 0.1 M KHCO. The pAu cathode anodized at 2.6 V exhibited maximum Faradaic efficiency (FE) for conversion of CO to CO (up to 100% at -0.75 V vs reversible hydrogen electrode (RHE)). Furthermore, commercial Si photovoltaic cells were combined with EC systems (PV-EC) consisting of pAu cathodes and IrO anodes. The triple-junction cell and EC system resulted in a solar-to-CO conversion efficiency (SCE) of 5.3% under 1 sun illumination and was operated for 100 h. This study provides a PV-EC CO reduction system for CO production and indicates the potential of the PV-EC system for the EC reduction of CO to value-added chemicals.
太阳能到化学能的转化是化石燃料的一种潜在替代方案。一种有前景的方法是将CO电化学(EC)还原为增值化学品,特别是碳氢化合物。在此,我们报道了在0.1 M KHCO中,多孔金纳米结构(pAu)阴极上CO选择性电化学还原为CO的情况。在2.6 V下阳极氧化的pAu阴极在将CO转化为CO时表现出最大法拉第效率(FE)(相对于可逆氢电极(RHE),在-0.75 V时高达100%)。此外,商用硅光伏电池与由pAu阴极和IrO阳极组成的EC系统(PV-EC)相结合。三结电池和EC系统在1个太阳光照下的太阳能到CO的转化效率(SCE)为5.3%,并运行了100小时。本研究提供了一种用于CO生产的PV-EC CO还原系统,并表明了PV-EC系统将CO电化学还原为增值化学品的潜力。