School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore.
Energy Research Institute @NTU, ERI@N, Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore.
ChemSusChem. 2017 Jun 9;10(11):2449-2456. doi: 10.1002/cssc.201700159. Epub 2017 May 12.
Photoelectrochemical (PEC) cells are attractive for storing solar energy in chemical bonds through cleaving of water into oxygen and hydrogen. Although hematite (α-Fe O ) is a promising photoanode material owing to its chemical stability, suitable band gap, low cost, and environmental friendliness, its performance is limited by short carrier lifetimes, poor conductivity, and sluggish kinetics leading to low (solar-to-hydrogen) STH efficiency. Herein, we combine solution-based hydrothermal growth and a post-growth surface exposure through atomic layer deposition (ALD) to show a dramatic enhancement of the efficiency for water photolysis. These modified photoanodes show a high photocurrent of 3.12 mA cm at 1.23 V versus RHE, (>5 times higher than Fe O ) and a plateau photocurrent of 4.5 mA cm at 1.5 V versus RHE. We demonstrate that these photoanodes in tandem with a CH NH PbI perovskite solar cell achieves overall unassisted water splitting with an STH conversion efficiency of 3.4 %, constituting a new benchmark for hematite-based tandem systems.
光电化学 (PEC) 电池通过将水分解为氧气和氢气,将太阳能以化学键的形式储存起来,因此备受关注。尽管赤铁矿 (α-Fe2O3) 作为一种很有前途的光阳极材料,具有化学稳定性、合适的能带隙、低成本和环境友好性,但由于载流子寿命短、导电性差和动力学缓慢,导致其性能受到限制,从而导致低的(太阳能到氢气)STH 效率。在此,我们结合基于溶液的水热生长和原子层沉积 (ALD) 的后生长表面暴露,展示了水分解效率的显著提高。这些改性光阳极在 1.23 V 相对于 RHE 时表现出 3.12 mA/cm 的高光电流,(比 Fe2O3 高 (>5 倍),在 1.5 V 相对于 RHE 时表现出 4.5 mA/cm 的平台光电流。我们证明,这些光阳极与 CH3NH3PbI3 钙钛矿太阳能电池串联,实现了整体无辅助水分解,STH 转换效率为 3.4%,构成了基于赤铁矿的串联系统的新基准。