Department of Chemistry and ‡School of Engineering, Brown University , Providence, Rhode Island 02912, United States.
J Am Chem Soc. 2013 Nov 13;135(45):16833-6. doi: 10.1021/ja409445p. Epub 2013 Nov 4.
We report selective electrocatalytic reduction of carbon dioxide to carbon monoxide on gold nanoparticles (NPs) in 0.5 M KHCO3 at 25 °C. Among monodisperse 4, 6, 8, and 10 nm NPs tested, the 8 nm Au NPs show the maximum Faradaic efficiency (FE) (up to 90% at -0.67 V vs reversible hydrogen electrode, RHE). Density functional theory calculations suggest that more edge sites (active for CO evolution) than corner sites (active for the competitive H2 evolution reaction) on the Au NP surface facilitates the stabilization of the reduction intermediates, such as COOH*, and the formation of CO. This mechanism is further supported by the fact that Au NPs embedded in a matrix of butyl-3-methylimidazolium hexafluorophosphate for more efficient COOH* stabilization exhibit even higher reaction activity (3 A/g mass activity) and selectivity (97% FE) at -0.52 V (vs RHE). The work demonstrates the great potentials of using monodisperse Au NPs to optimize the available reaction intermediate binding sites for efficient and selective electrocatalytic reduction of CO2 to CO.
我们在 25°C 的 0.5 M KHCO3 中报告了金纳米粒子 (NPs) 对二氧化碳的选择性电催化还原为一氧化碳。在所测试的单分散 4、6、8 和 10 nm NPs 中,8nm Au NPs 显示出最高的法拉第效率 (FE)(在 -0.67 V 相对于可逆氢电极,RHE 时高达 90%)。密度泛函理论计算表明,Au NP 表面的更多边缘位点(对于 CO 演化反应活性)比角位点(对于竞争的 H2 演化反应活性)有利于稳定还原中间体,例如 COOH*,并形成 CO。这一机制进一步得到了以下事实的支持:嵌入在更有效地稳定 COOH*的丁基-3-甲基咪唑六氟磷酸盐基质中的 Au NPs 在 -0.52 V(相对于 RHE)时表现出更高的反应活性(3 A/g 质量活性)和选择性(97% FE)。这项工作证明了使用单分散 Au NPs 来优化可用反应中间体结合位点以实现高效和选择性电催化还原 CO2 为 CO 的巨大潜力。
J Am Chem Soc. 2013-11-4
J Am Chem Soc. 2015-3-11
J Am Chem Soc. 2014-11-11
Small Sci. 2025-2-11
Nanomaterials (Basel). 2025-3-20
Nanomaterials (Basel). 2025-3-15
Precis Chem. 2024-3-4