Thannhauser Jos, Nas Joris, van der Sluijs Koen, Zwart Hans, de Boer Menko-Jan, van Royen Niels, Bonnes Judith, Brouwer Marc
Department of Cardiology, Radboudumc, Nijmegen, the Netherlands.
Department of Cardiology, Radboudumc, Nijmegen, the Netherlands.
Resuscitation. 2022 May;174:62-67. doi: 10.1016/j.resuscitation.2022.03.025. Epub 2022 Mar 26.
On-scene detection of acute coronary occlusion (ACO) during ongoing ventricular fibrillation (VF) may facilitate patient-tailored triage and treatment during cardiac arrest. Experimental studies have demonstrated the diagnostic potential of the amplitude spectrum area (AMSA) of the VF-waveform to detect myocardial infarction (MI). In follow-up, we performed this clinical pilot study on VF-waveform based discriminative models to diagnose acute MI due to ACO in real-world VF-patients.
In our registry of VF-patients transported to a tertiary hospital (Nijmegen, The Netherlands), we studied patients with high-quality VF-registrations. We calculated VF-characteristics prior to the first shock, and first-to-second shock changes (Δ-characteristics). Primary aim was to assess the discriminative ability of the AMSA to detect patients with ACO. Secondarily, we investigated the discriminative value of adding ΔAMSA-measures using machine learning algorithms. Model performances were assessed using C-statistics.
In total, there were 67 VF-patients with and 34 without an ACO, and baseline characteristics did not differ significantly. Based on the AMSA prior to the first defibrillation attempt, discrimination between ACO and non-ACO was possible, with a C-statistic of 0.66 (0.56-0.75). The discriminative model using AMSA + ΔAMSA yielded a C-statistic of 0.80 (0.69-0.88).
These clinical pilot data confirm previous experimental findings that early detection of MI using VF-waveform analysis seems feasible, and add insights on the diagnostic impact of accounting for first-to-second shock changes in VF-characteristics. Confirmative studies in larger cohorts and with a variety of VF-algorithms are warranted to further investigate the potential of this innovative approach.
在持续性室颤(VF)期间现场检测急性冠状动脉闭塞(ACO)可能有助于在心脏骤停期间进行针对患者的分诊和治疗。实验研究已经证明室颤波形的振幅谱面积(AMSA)在检测心肌梗死(MI)方面具有诊断潜力。在后续研究中,我们对基于室颤波形的判别模型进行了这项临床初步研究,以诊断现实世界中室颤患者因ACO导致的急性心肌梗死。
在我们登记的转运至一家三级医院(荷兰奈梅亨)的室颤患者中,我们研究了具有高质量室颤记录的患者。我们计算了首次电击前的室颤特征以及首次电击与第二次电击之间的变化(特征变化量)。主要目的是评估AMSA检测ACO患者的判别能力。其次,我们使用机器学习算法研究了添加ΔAMSA测量值的判别价值。使用C统计量评估模型性能。
总共有67例有ACO的室颤患者和34例无ACO的室颤患者,基线特征无显著差异。基于首次除颤尝试前的AMSA,可以区分ACO和非ACO,C统计量为0.66(0.56 - 0.75)。使用AMSA + ΔAMSA的判别模型的C统计量为0.80(0.69 - 0.88)。
这些临床初步数据证实了先前的实验结果,即使用室颤波形分析早期检测心肌梗死似乎是可行的,并增加了关于考虑室颤特征中首次电击与第二次电击变化的诊断影响的见解。需要在更大的队列中并使用各种室颤算法进行确证性研究,以进一步研究这种创新方法的潜力。