Suppr超能文献

RNAseqCNV:从 RNA-seq 数据中分析大规模拷贝数变异。

RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data.

机构信息

Childhood Leukemia Investigation Prague (CLIP), 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.

Department of Computational and Quantitative Medicine & Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.

出版信息

Leukemia. 2022 Jun;36(6):1492-1498. doi: 10.1038/s41375-022-01547-8. Epub 2022 Mar 29.

Abstract

Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying copy number variations (CNVs) has not been well described. CNV information inferred from RNA-seq can be highly informative to guide disease classification and risk stratification in ALL due to the high incidence of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large scale CNVs from RNA-seq data. We used models based on normalized gene expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL (99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the models were further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly identify copy number alterations in the absence of DNA-based analyses, further enhancing the utility of RNA-seq to classify ALL subtype.

摘要

转录组测序(RNA-seq)广泛用于检测急性淋巴细胞白血病(ALL)中的基因重排和定量基因表达,但它在识别拷贝数变异(CNV)方面的效用和准确性尚未得到很好的描述。由于该病中存在高比例的非整倍体亚型,因此从 RNA-seq 推断的 CNV 信息对于指导 ALL 的疾病分类和风险分层非常有意义。在这里,我们描述了 RNAseqCNV,这是一种从 RNA-seq 数据中检测大规模 CNV 的方法。我们使用基于归一化基因表达和次要等位基因频率的模型,以高精度(ALL 分别为 99.1%和 98.3%,非整倍体染色体臂分别为 98.3%)对臂级 CNV 进行分类,并且这些模型在急性髓系白血病中也具有出色的性能(总体准确率为 99.8%,非整倍体染色体臂准确率为 99.4%)。RNAseqCNV 在 ALL 数据集的 CNV 调用中优于其他基于替代 RNA-seq 的算法,尤其是在具有高比例 CNV 的样本中。CNV 调用与基于 DNA 的 CNV 结果高度一致,并且比传统的基于细胞遗传学的核型分析更可靠。RNAseqCNV 提供了一种在缺乏基于 DNA 的分析的情况下稳健识别拷贝数改变的方法,进一步增强了 RNA-seq 对 ALL 亚型进行分类的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d22/9177690/5ae4bb5d0a6a/nihms-1788556-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验