Suppr超能文献

RNAI-FRID:一种新颖的特征表示方法,具有信息增强和降维功能,用于 RNA-RNA 相互作用。

RNAI-FRID: novel feature representation method with information enhancement and dimension reduction for RNA-RNA interaction.

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China.

School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.

出版信息

Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac107.

Abstract

Different ribonucleic acids (RNAs) can interact to form regulatory networks that play important role in many life activities. Molecular biology experiments can confirm RNA-RNA interactions to facilitate the exploration of their biological functions, but they are expensive and time-consuming. Machine learning models can predict potential RNA-RNA interactions, which provide candidates for molecular biology experiments to save a lot of time and cost. Using a set of suitable features to represent the sample is crucial for training powerful models, but there is a lack of effective feature representation for RNA-RNA interaction. This study proposes a novel feature representation method with information enhancement and dimension reduction for RNA-RNA interaction (named RNAI-FRID). Diverse base features are first extracted from RNA data to contain more sample information. Then, the extracted base features are used to construct the complex features through an arithmetic-level method. It greatly reduces the feature dimension while keeping the relationship between molecule features. Since the dimension reduction may cause information loss, in the process of complex feature construction, the arithmetic mean strategy is adopted to enhance the sample information further. Finally, three feature ranking methods are integrated for feature selection on constructed complex features. It can adaptively retain important features and remove redundant ones. Extensive experiment results show that RNAI-FRID can provide reliable feature representation for RNA-RNA interaction with higher efficiency and the model trained with generated features obtain better performance than other deep neural network predictors.

摘要

不同的核糖核酸 (RNA) 可以相互作用,形成在许多生命活动中发挥重要作用的调控网络。分子生物学实验可以证实 RNA-RNA 相互作用,从而促进对其生物学功能的探索,但这些实验既昂贵又耗时。机器学习模型可以预测潜在的 RNA-RNA 相互作用,为分子生物学实验提供候选者,从而节省大量时间和成本。使用一组合适的特征来表示样本对于训练强大的模型至关重要,但 RNA-RNA 相互作用缺乏有效的特征表示。本研究提出了一种新的 RNA-RNA 相互作用特征表示方法,具有信息增强和降维(命名为 RNAI-FRID)。首先从 RNA 数据中提取多样化的碱基特征,以包含更多的样本信息。然后,通过算术级方法,利用提取的碱基特征构建复杂特征。它在保持分子特征之间关系的同时,大大降低了特征维度。由于降维可能导致信息丢失,在复杂特征构建过程中,采用算术平均值策略进一步增强样本信息。最后,集成了三种特征排序方法,用于构建复杂特征的特征选择。它可以自适应地保留重要特征并去除冗余特征。广泛的实验结果表明,RNAI-FRID 可以为 RNA-RNA 相互作用提供可靠的特征表示,具有更高的效率,并且使用生成特征训练的模型比其他深度神经网络预测器具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验