He Yu, Ning ZiLan, Zhu XingHui, Zhang YinQiong, Liu ChunHai, Jiang SiWei, Yuan ZheMing, Zhang HongYan
College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China.
Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
Interdiscip Sci. 2024 Oct 9. doi: 10.1007/s12539-024-00652-9.
Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.
识别长链非编码RNA(lncRNAs)与微小RNA(miRNAs)之间的相互作用为理解植物生命过程中的调控关系提供了新视角。最近,基于图神经网络(GNNs)的计算方法已被广泛用于预测lncRNA-miRNA相互作用(LMI),弥补了生物学实验的不足。然而,图的低语义性和噪声限制了现有基于GNN方法的性能。本文中,我们开发了一种新颖的反事实异构图注意力网络(CFHAN),以提高对噪声的鲁棒性并预测植物LMI。首先,我们构建了一个基于现实世界的lncRNA-miRNA(L-M)异质网络。其次,CFHAN利用节点级注意力、语义级注意力和反事实链接来增强节点嵌入学习。最后,这些嵌入被用作多层感知器(MLP)的输入,以预测lncRNAs和miRNAs之间的相互作用。在植物LMI的基准数据集上评估我们的方法,CFHAN优于五种最先进的方法,平均AUC和平均ACC分别达到0.9953和0.9733。这证明了CFHAN预测植物LMI的能力,并展示了其有前景的跨物种预测能力,为实验性LMI研究提供了有价值的见解。