Suppr超能文献

基于多层次信息增强和贪心模糊决策的集成深度学习方法用于植物 miRNA-lncRNA 相互作用预测。

Ensemble Deep Learning Based on Multi-level Information Enhancement and Greedy Fuzzy Decision for Plant miRNA-lncRNA Interaction Prediction.

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.

School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China.

出版信息

Interdiscip Sci. 2021 Dec;13(4):603-614. doi: 10.1007/s12539-021-00434-7. Epub 2021 Apr 26.

Abstract

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are both non-coding RNAs (ncRNAs) and their interactions play important roles in biological processes. Computational methods, such as machine learning and various bioinformatics tools, can predict potential miRNA-lncRNA interactions, which is significant for studying their mechanisms and biological functions. A growing number of RNA interaction predictors for animal have been reported, but they are unreliable for plant due to the differences of ncRNAs in animal and plant. It is urgent to build a reliable plant predictor, especially for cross-species. This paper proposes an ensemble deep learning model based on multi-level information enhancement and greedy fuzzy decision (PmliPEMG) for plant miRNA-lncRNA interaction prediction. The fusion complex features, multi-scale convolutional long short-term memory networks, and attention mechanism are adopted to enhance the sample information at the feature, scale, and model levels, respectively. An ensemble deep learning model is built based on a novel method (greedy fuzzy decision) which greatly improves the efficiency. The multi-level information enhancement and greedy fuzzy decision are verified to have the positive effects on prediction performance. PmliPEMG can be applied to the cross-species prediction. It shows better performance and stronger generalization ability than state-of-the-art predictors and may provide valuable references for related research.

摘要

微小 RNA(miRNA)和长非编码 RNA(lncRNA)都是非编码 RNA(ncRNA),它们的相互作用在生物过程中发挥着重要作用。计算方法,如机器学习和各种生物信息学工具,可以预测潜在的 miRNA-lncRNA 相互作用,这对于研究它们的机制和生物学功能具有重要意义。已经有越来越多的动物 RNA 相互作用预测器被报道,但由于动物和植物中 ncRNA 的差异,它们对植物的预测并不可靠。因此,迫切需要建立一个可靠的植物预测器,特别是用于跨物种的预测器。本文提出了一种基于多层次信息增强和贪婪模糊决策的集成深度学习模型(PmliPEMG),用于植物 miRNA-lncRNA 相互作用预测。该模型采用融合复杂特征、多尺度卷积长短期记忆网络和注意力机制,分别在特征、尺度和模型层面增强样本信息。基于一种新的方法(贪婪模糊决策)构建了一个集成深度学习模型,大大提高了预测效率。多层次信息增强和贪婪模糊决策被验证对预测性能具有积极影响。PmliPEMG 可以应用于跨物种预测,它在性能和泛化能力方面均优于最先进的预测器,可能为相关研究提供有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验