Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
J Am Chem Soc. 2022 Apr 13;144(14):6326-6342. doi: 10.1021/jacs.1c13568. Epub 2022 Mar 30.
Covalent protein kinase inhibitors exploit currently noncatalytic cysteines in the adenosine 5'-triphosphate (ATP)-binding site via electrophiles directly appended to a reversible-inhibitor scaffold. Here, we delineate a path to target solvent-exposed cysteines at a distance >10 Å from an ATP-site-directed core module and produce potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors. First, reactive warheads are used to reach out to Cys862 on PI3Kα, and second, enones are replaced with druglike warheads while linkers are optimized. The systematic investigation of intrinsic warhead reactivity (), rate of covalent bond formation and proximity ( and reaction space volume ), and integration of structure data, kinetic and structural modeling, led to the guided identification of high-quality, covalent chemical probes. A novel stochastic approach provided direct access to the calculation of overall reaction rates as a function of , , , and , which was validated with compounds with varied linker lengths. X-ray crystallography, protein mass spectrometry (MS), and NanoBRET assays confirmed covalent bond formation of the acrylamide warhead and Cys862. In rat liver microsomes, compounds and outperformed the rapidly metabolized CNX-1351, the only known PI3Kα irreversible inhibitor. Washout experiments in cancer cell lines with mutated, constitutively activated PI3Kα showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds and revealed PI3Kβ-dependent signaling, which was sensitive to TGX221. Compounds and thus qualify as specific chemical probes to explore PI3Kα-selective signaling branches. The proposed approach is generally suited to develop covalent tools targeting distal, unexplored Cys residues in biologically active enzymes.
共价蛋白激酶抑制剂通过直接连接到可逆抑制剂支架上的亲电试剂来利用腺苷 5'-三磷酸 (ATP) 结合位点中当前非催化的半胱氨酸。在这里,我们开辟了一条途径,可以靶向远离 ATP 位点定向核心模块 >10 Å 的溶剂暴露半胱氨酸,并产生有效的共价磷酸肌醇 3-激酶α (PI3Kα) 抑制剂。首先,使用反应性弹头到达 PI3Kα 上的 Cys862,其次,用类似药物的弹头替换烯酮,同时优化连接子。对固有弹头反应性 ()、共价键形成和接近速度 ( 和反应空间体积 ) 的系统研究以及结构数据、动力学和结构建模的整合,导致了高质量、共价化学探针的有针对性识别。一种新的随机方法提供了直接计算作为 、 、 和 的函数的总反应速率的方法,并用具有不同连接子长度的化合物进行了验证。X 射线晶体学、蛋白质质谱 (MS) 和 NanoBRET 测定法证实了丙烯酰胺弹头和 Cys862 的共价键形成。在大鼠肝微粒体中,化合物 和 优于快速代谢的 CNX-1351,后者是唯一已知的 PI3Kα 不可逆抑制剂。在具有突变的、组成性激活的 PI3Kα 的癌细胞系中进行的洗脱实验显示出对 PI3Kα 的持久抑制。在 SKOV3 细胞中,化合物 和 揭示了对 PI3Kβ 依赖性信号的敏感性,而对 TGX221 敏感。因此,化合物 和 可作为探索 PI3Kα 选择性信号分支的特异性化学探针。所提出的方法通常适用于开发靶向生物活性酶中未探索的远端、未探索的 Cys 残基的共价工具。