Suppr超能文献

阐明镍-联吡啶光氧化还原催化剂中激发态键均裂的机理。

Elucidating the Mechanism of Excited-State Bond Homolysis in Nickel-Bipyridine Photoredox Catalysts.

机构信息

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts 02108, United States.

出版信息

J Am Chem Soc. 2022 Apr 13;144(14):6516-6531. doi: 10.1021/jacs.2c01356. Epub 2022 Mar 30.

Abstract

Ni 2,2'-bipyridine (bpy) complexes are commonly employed photoredox catalysts of bond-forming reactions in organic chemistry. However, the mechanisms by which they operate are still under investigation. One potential mode of catalysis is via entry into Ni(I)/Ni(III) cycles, which can be made possible by light-induced, excited-state Ni(II)-C bond homolysis. Here, we report experimental and computational analyses of a library of Ni(II)-bpy aryl halide complexes, Ni(bpy)(Ph)Cl (R = MeO, -Bu, H, MeOOC; R' = CH, H, OMe, F, CF), to illuminate the mechanism of excited-state bond homolysis. At given excitation wavelengths, photochemical homolysis rate constants span 2 orders of magnitude across these structures and correlate linearly with Hammett parameters of both bpy and aryl ligands, reflecting structural control over key metal-to-ligand charge-transfer (MLCT) and ligand-to-metal charge-transfer (LMCT) excited-state potential energy surfaces (PESs). Temperature- and wavelength-dependent investigations reveal moderate excited-state barriers (Δ ∼ 4 kcal mol) and a minimum energy excitation threshold (∼55 kcal mol, 525 nm), respectively. Correlations to electronic structure calculations further support a mechanism in which repulsive triplet excited-state PESs featuring a critical aryl-to-Ni LMCT lead to bond rupture. Structural control over excited-state PESs provides a rational approach to utilize photonic energy and leverage excited-state bond homolysis processes in synthetic chemistry.

摘要

镍 2,2'-联吡啶(bpy)配合物通常被用作有机化学中形成键反应的光氧化还原催化剂。然而,它们的作用机制仍在研究中。一种潜在的催化模式是通过进入 Ni(I)/Ni(III) 循环,这可以通过光诱导的、激发态 Ni(II)-C 键均裂来实现。在这里,我们报告了一系列 Ni(II)-bpy 芳基卤化物配合物的实验和计算分析,Ni(bpy)(Ph)Cl(R = MeO,-Bu,H,MeOOC;R' = CH,H,OMe,F,CF),以阐明激发态键均裂的机制。在给定的激发波长下,光化学均裂速率常数在这些结构中跨越 2 个数量级,与 bpy 和芳基配体的哈米特参数线性相关,反映了结构对关键金属-配体电荷转移(MLCT)和配体-金属电荷转移(LMCT)激发态势能面(PES)的控制。温度和波长依赖性研究分别揭示了中等激发态势垒(Δ∼4 kcal mol)和最小能量激发阈值(∼55 kcal mol,525 nm)。与电子结构计算的相关性进一步支持了一种机制,即具有关键芳基到 Ni 的 LMCT 的排斥三重态激发态 PES 导致键断裂。对激发态 PES 的结构控制为利用光子能量和在合成化学中利用激发态键均裂过程提供了一种合理的方法。

相似文献

引用本文的文献

9
Low-energy photoredox catalysis.低能量光氧化还原催化
Nat Rev Chem. 2025 Jan;9(1):28-45. doi: 10.1038/s41570-024-00663-6. Epub 2024 Nov 11.

本文引用的文献

2
Ligand-field transition-induced C-S bond formation from nickelacycles.配体场跃迁诱导镍杂环形成C-S键
Chem Sci. 2021 Nov 10;12(48):15908-15915. doi: 10.1039/d1sc05113j. eCollection 2021 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验