Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2024357119. doi: 10.1073/pnas.2024357119. Epub 2022 Mar 30.
Prostate epithelial cells have the unique capacity to secrete large amounts of citrate, but the carbon sources and metabolic pathways that maintain this production are not well known. We mapped potential pathways for citrate carbons in the human prostate cancer metastasis cell lines LNCaP and VCaP, for which we first established that they secrete citrate (For LNCaP 5.6 ± 0.9 nmol/h per 106 cells). Using 13C-labeled substrates, we traced the incorporation of 13C into citrate by NMR of extracellular fluid. Our results provide direct evidence that glucose is a main carbon source for secreted citrate. We also demonstrate that carbons from supplied glutamine flow via oxidative Krebs cycle and reductive carboxylation routes to positions in secreted citrate but likely do not contribute to its net synthesis. The potential anaplerotic carbon sources aspartate and asparagine did not contribute to citrate carbons. We developed a quantitative metabolic model employing the 13C distribution in extracellular citrate after 13C glucose and pyruvate application to assess intracellular pathways of carbons for secreted citrate. From this model, it was estimated that in LNCaP about 21% of pyruvate entering the Krebs cycle is converted via pyruvate carboxylase as an anaplerotic route at a rate more than sufficient to compensate carbon loss of this cycle by citrate secretion. This model provides an estimation of the fraction of molecules, including citrate, leaving the Krebs cycle at every turn. The measured ratios of 13C atoms at different positions in extracellular citrate may serve as biomarkers for (malignant) epithelial cell metabolism.
前列腺上皮细胞具有分泌大量柠檬酸的独特能力,但维持这种产生的碳源和代谢途径尚不清楚。我们绘制了人类前列腺癌细胞系 LNCaP 和 VCaP 中柠檬酸碳的潜在途径图,我们首先确定它们分泌柠檬酸(对于 LNCaP 为 5.6±0.9 nmol/h per 106 细胞)。使用 13C 标记的底物,我们通过细胞外液的 NMR 追踪 13C 掺入柠檬酸的情况。我们的结果提供了直接证据,证明葡萄糖是分泌柠檬酸的主要碳源。我们还证明,来自供应的谷氨酰胺的碳通过氧化克雷布斯循环和还原羧化途径流向分泌的柠檬酸中的位置,但可能不会有助于其净合成。潜在的氨基羧酸源天冬氨酸和天冬酰胺没有为柠檬酸碳做出贡献。我们开发了一种定量代谢模型,在 13C 葡萄糖和丙酮酸应用后,使用细胞外柠檬酸中的 13C 分布来评估分泌柠檬酸的细胞内碳途径。根据该模型,估计 LNCaP 中约有 21%进入克雷布斯循环的丙酮酸通过丙酮酸羧化酶作为一种氨基羧酸途径转化,其速率足以弥补柠檬酸分泌导致该循环的碳损失。该模型提供了对每一轮离开克雷布斯循环的分子(包括柠檬酸)的分数的估计。细胞外柠檬酸中不同位置的 13C 原子的测量比值可以作为(恶性)上皮细胞代谢的生物标志物。