Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
Mol Metab. 2022 Aug;62:101516. doi: 10.1016/j.molmet.2022.101516. Epub 2022 May 20.
The prostate is metabolically unique: it produces high levels of citrate for secretion via a truncated tricarboxylic acid (TCA) cycle to maintain male fertility. In prostate cancer (PCa), this phenotype is reprogrammed, making it an interesting therapeutic target. However, how the truncated prostate TCA cycle works is still not completely understood.
We optimized targeted metabolomics in mouse and human organoid models in ex vivo primary culture. We then used stable isotope tracer analyses to identify the pathways that fuel citrate synthesis.
First, mouse and human organoids were shown to recapitulate the unique citrate-secretory program of the prostate, thus representing a novel model that reproduces this unusual metabolic profile. Using stable isotope tracer analysis, several key nutrients were shown to allow the completion of the prostate TCA cycle, revealing a much more complex metabolic profile than originally anticipated. Indeed, along with the known pathway of aspartate replenishing oxaloacetate, glutamine was shown to fuel citrate synthesis through both glutaminolysis and reductive carboxylation in a GLS1-dependent manner. In human organoids, aspartate entered the TCA cycle at the malate entry point, upstream of oxaloacetate. Our results demonstrate that the citrate-secretory phenotype of prostate organoids is supported by the known aspartate-oxaloacetate-citrate pathway, but also by at least three additional pathways: glutaminolysis, reductive carboxylation, and aspartate-malate conversion.
Our results add a significant new dimension to the prostate citrate-secretory phenotype, with at least four distinct pathways being involved in citrate synthesis. Better understanding this distinctive citrate metabolic program will have applications in both male fertility as well as in the development of novel targeted anti-metabolic therapies for PCa.
前列腺具有独特的代谢特性:它通过截短的三羧酸(TCA)循环产生高水平的柠檬酸用于分泌,以维持男性生育能力。在前列腺癌(PCa)中,这种表型被重新编程,使其成为一个有趣的治疗靶点。然而,截短的前列腺 TCA 循环如何运作仍不完全清楚。
我们在体外原代培养的小鼠和人类类器官模型中优化了靶向代谢组学。然后,我们使用稳定同位素示踪剂分析来确定为柠檬酸合成提供燃料的途径。
首先,证明小鼠和人类类器官重现了前列腺独特的柠檬酸分泌程序,因此代表了一种新的模型,可再现这种异常代谢特征。使用稳定同位素示踪剂分析,表明几种关键营养素可完成前列腺 TCA 循环,揭示了比最初预期更为复杂的代谢特征。实际上,除了已知的天冬氨酸补充草酰乙酸途径外,还表明谷氨酰胺通过谷氨酰胺分解代谢和还原羧化作用以依赖 GLS1 的方式为柠檬酸合成提供燃料。在人类类器官中,天冬氨酸进入 TCA 循环的位置在草酰乙酸的上游,即苹果酸进入点。我们的结果表明,前列腺类器官的柠檬酸分泌表型不仅由已知的天冬氨酸-草酰乙酸-柠檬酸途径支持,还至少由另外三种途径支持:谷氨酰胺分解代谢、还原羧化和天冬氨酸-苹果酸转换。
我们的结果为前列腺柠檬酸分泌表型增加了一个重要的新维度,至少有四种不同的途径参与柠檬酸合成。更好地理解这种独特的柠檬酸代谢程序将在男性生育能力以及开发针对 PCa 的新型靶向代谢疗法方面具有应用价值。