Suppr超能文献

调控网络协调骨骼肌中线粒体质量控制。

Regulatory networks coordinating mitochondrial quality control in skeletal muscle.

机构信息

Muscle Health Research Centre, York University, Toronto, Ontario, Canada.

School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.

出版信息

Am J Physiol Cell Physiol. 2022 May 1;322(5):C913-C926. doi: 10.1152/ajpcell.00065.2022. Epub 2022 Mar 30.

Abstract

The adaptive plasticity of mitochondria within a skeletal muscle is regulated by signals converging on a myriad of regulatory networks that operate during conditions of increased (i.e., exercise) and decreased (inactivity, disuse) energy requirements. Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magnitude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) and other regulators ultimately produces an abundance of high-quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompanied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well chaperones and proteases termed the mitochondrial unfolded protein response (UPR). The UPR monitors intraorganelle proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retrograde signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochondrial quality and content. Thus, the interactive cross talk of the regulatory networks that control organelle turnover during wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the traditional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summarizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy, protein quality control, and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine muscle and mitochondrial health.

摘要

骨骼肌中线粒体的适应性可塑性受多种调节网络信号的调节,这些信号在能量需求增加(即运动)和减少(不活动、废用)的情况下汇聚。值得注意的是,一些最初诱导适应性反应的信号对于两种情况都是共同的,只是在幅度和时间模式上有所不同,从而产生了截然不同的线粒体表型。对运动的反应,过氧化物酶体增殖物激活受体(PPAR)-γ共激活因子 1α(PGC-1α)和其他调节剂的信号最终产生大量高质量的线粒体,导致自噬减少和线粒体含量增加。同时,还存在一个增强的蛋白质质量控制系统,包括蛋白质导入机制以及伴侣蛋白和蛋白酶,称为线粒体未折叠蛋白反应(UPR)。UPR 监测细胞器内的蛋白质稳态,并通过从细胞器到细胞核的逆行信号努力维持核和 mtDNA 衍生基因产物之间的核-线粒体平衡。此外,抗氧化能力得到提高,从而提供了对氧化应激的更大保护。相反,慢性废用条件产生相似的信号,但导致线粒体质量和含量下降。因此,尽管我们对细胞器含量和功能的传统调节剂的了解不断提高,但控制肌肉使用和废用过程中线粒体周转率的调节网络的相互交流仍不完全清楚。这篇简短的综述承认了现有的调节网络,并总结了最近发现的涉及确定细胞器发生、动态、自噬、蛋白质质量控制和抗氧化能力的新生物学途径,确定了大量用于治疗干预的蛋白质靶点,这些靶点决定了肌肉和线粒体的健康。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验