Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
Complex Systems Division, Beijing Computational Science Research Center, Beijing, China.
Nature. 2022 Mar;603(7903):819-823. doi: 10.1038/s41586-022-04509-3. Epub 2022 Mar 30.
The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms. Although the low-Reynolds-number hydrodynamics of swimming flagellated bacteria in simple Newtonian fluids has been well developed, our understanding of bacterial motility in complex non-Newtonian fluids is less mature. Even after six decades of research, fundamental questions about the nature and origin of bacterial motility enhancement in polymer solutions are still under debate. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon. A physical model that incorporates the colloidal nature of complex fluids quantitatively explains bacterial wobbling dynamics and mobility enhancement in both colloidal and polymeric fluids. Our findings contribute to the understanding of motile behaviours of bacteria in complex fluids, which are relevant for a wide range of microbiological processes and for engineering bacterial swimming in complex environments.
微生物的自然栖息地,如人体微生物组、海洋和土壤生态系统,充满了胶体和大分子。这些环境表现出非牛顿流特性,极大地影响了微生物的运动。尽管在简单牛顿流体中,鞭毛细菌的低雷诺数流体动力学已经得到了很好的发展,但我们对细菌在复杂非牛顿流体中的运动能力的理解还不够成熟。即使经过六十年的研究,关于细菌在聚合物溶液中增强运动能力的本质和起源的基本问题仍在争论中。在这里,我们展示了在稀胶体悬浮液中鞭毛细菌表现出与在稀聚合物溶液中类似的运动行为,特别是在通用的颗粒尺寸依赖性的运动能力增强,最高可达 80%,同时强烈抑制了细菌的抖动。由于胶体具有硬球性质,我们可以在实验中改变胶体的大小和体积分数,我们的结果阐明了关于复杂流体中细菌运动能力增强的长期争议,并表明聚合物动力学对于捕捉这一现象可能并非必要。一个定量地包含复杂流体胶体性质的物理模型解释了细菌在胶体和聚合物流体中的抖动动力学和迁移能力增强。我们的发现有助于理解细菌在复杂流体中的运动行为,这对于广泛的微生物过程和在复杂环境中工程化细菌游泳都具有重要意义。