Brown Peter T, Jabbarzadeh Nikta, Meneses Luis, Swanson Kaia, Pintuff Aidan, Monakhova Ekaterina, Kruithoff Rory, Wadhwa Navish, Galati Domenico F, Shepherd Douglas P
Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA.
Department of Physics, Arizona State University, Tempe, AZ 85287, USA.
Sci Adv. 2025 Aug 15;11(33):eadr8004. doi: 10.1126/sciadv.adr8004. Epub 2025 Aug 13.
Many biological and soft matter processes occur at high speeds in complex three-dimensional (3D) environments, and developing imaging techniques capable of elucidating their dynamics is an outstanding challenge. Here, we introduce Fourier synthesis optical diffraction tomography (FS-ODT), a quantitative phase imaging approach capable of recording the 3D refractive index at kilohertz rates. FS-ODT introduces computational strategies that multiplex tens of illumination angles in a single tomogram, markedly increasing the volumetric imaging rate. We validate FS-ODT on samples of known composition, hindered diffusion of colloids in solution, and the motility of bacterial swimmers. We also integrate FS-ODT into a multimodal microscope combining refractive index imaging with multicolor structured illumination microscopy. FS-ODT is a promising approach for unlocking imaging regimes that have been little explored, including understanding the physical interactions of colloids and microswimmers with their 3D environment and the interplay between these stimuli and the molecular response of biological systems.
许多生物和软物质过程在复杂的三维(3D)环境中高速发生,开发能够阐明其动力学的成像技术是一项重大挑战。在此,我们介绍傅里叶合成光学衍射断层扫描(FS-ODT),这是一种能够以千赫兹速率记录三维折射率的定量相位成像方法。FS-ODT引入了在单个断层图像中复用数十个照明角度的计算策略,显著提高了体积成像速率。我们在已知成分的样品、溶液中胶体的受阻扩散以及细菌游动体的运动性方面验证了FS-ODT。我们还将FS-ODT集成到一个多模态显微镜中,该显微镜将折射率成像与多色结构照明显微镜相结合。FS-ODT是一种很有前景的方法,可用于开启尚未充分探索的成像领域,包括理解胶体和微游动体与其三维环境的物理相互作用,以及这些刺激与生物系统分子反应之间的相互作用。