Suppr超能文献

铁催化的碳化钼异质界面级联构建用于理解析氢反应。

Iron Catalyzed Cascade Construction of Molybdenum Carbide Heterointerfaces for Understanding Hydrogen Evolution.

机构信息

Department of Chemistry, Northeastern University, Shenyang, 110819, China.

MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.

出版信息

Small. 2022 May;18(18):e2200439. doi: 10.1002/smll.202200439. Epub 2022 Mar 30.

Abstract

The intercrystalline interfaces have been proven vital in heterostructure catalysts. However, it is still challenging to generate specified heterointerfaces and to make clear the mechanism of a reaction on the interface. Herein, this work proposes a strategy of Fe-catalyzed cascade formation of heterointerfaces for comprehending the hydrogen evolution reaction (HER). In the pure solid-phase reaction system, Fe catalyzes the in situ conversion of MoO to MoC and then Mo C, and the consecutive formation leaves lavish intercrystalline interfaces of MoO -MoC (in Fe-MoO /MoC@NC) or MoC-Mo C (in Fe-MoC/β-Mo C@NC), which contribute to HER activity. The improved HER activity on the interface leads to further checking of the mechanism with density functional theory calculation. The computation results reveal that the electroreduction (Volmer step) produced H* prefers to be adsorbed on Mo C; then two pathways are proposed for the HER on the interface of MoC-Mo C, including the single-molecular adsorption pathway (Rideal mechanism) and the bimolecular adsorption pathway (Langmuir-Hinshelwood mechanism). The calculation results further show that the former is favorable, and the reaction on the MoC-Mo C heterointerface significantly lowers the energy barriers of the rate-determining steps.

摘要

晶界界面已被证明在异质结构催化剂中至关重要。然而,如何生成特定的异质界面并阐明界面上的反应机制仍然具有挑战性。在此,本工作提出了一种 Fe 催化的异质界面级联形成策略,以理解析氢反应 (HER)。在纯固相反应体系中,Fe 催化 MoO 的原位转化为 MoC 和 Mo2C,连续的形成留下了丰富的 MoO-MoC(在 Fe-MoO/MoC@NC 中)或 MoC-Mo2C(在 Fe-MoC/β-Mo2C@NC)晶界界面,这有助于 HER 活性。界面上提高的 HER 活性促使我们进一步通过密度泛函理论计算来检验其反应机制。计算结果表明,电还原(Volmer 步骤)产生的 H*更倾向于吸附在 MoC 上;然后,提出了两种在 MoC-Mo2C 界面上进行 HER 的途径,包括单分子吸附途径(Rideal 机制)和双分子吸附途径(Langmuir-Hinshelwood 机制)。计算结果进一步表明,前者更为有利,MoC-Mo2C 异质界面上的反应显著降低了决速步骤的能量势垒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验