Suppr超能文献

界面密度工程在异质二硫化钼上实现高效析氢催化和钠离子存储。

Interface Density Engineering on Heterogeneous Molybdenum Dichalcogenides Enabling Highly Efficient Hydrogen Evolution Catalysis and Sodium Ion Storage.

机构信息

School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China.

School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China.

出版信息

Small. 2023 Jun;19(26):e2207919. doi: 10.1002/smll.202207919. Epub 2023 Mar 20.

Abstract

Constructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO /MoS heterogeneous nanorods are encapsulated in nitrogen and sulfur co-doped carbon matrix (MoO /MoS @NSC) by controllable sulfidation. MoO and MoS are coupled intimately at atomic level, forming the MoO /MoS heterointerfaces with different distribution density. Strong electronic interactions are triggered at these MoO /MoS heterointerfaces for enhancing electron transfer. In alkaline media, the optimal material exhibits outstanding hydrogen evolution reaction (HER) performances that significantly surpass carbon-covered MoS nanorods counterpart (η : 156 mV vs 232 mV) and most of the MoS -based heterostructures reported recently. First-principles calculation deciphers that MoO /MoS heterointerfaces greatly promote water dissociation and hydrogen atom adsorption via the O-Mo-S electronic bridges during HER process. Moreover, benefited from the high pseudocapacitance contribution, abundant "ion reservoir"-like channels, and low Na diffusion barrier appended by high-density MoO /MoS heterointerfaces, the material delivers high specific capacity of 888 mAh g , remarkable rate capability and cycling stability of 390 cycles at 0.1 A g as the anode of sodium ion battery. This work will undoubtedly light the way of interface density engineering for high-performance electrochemical energy conversion and storage systems.

摘要

构建活性异质界面是增强过渡金属二硫属化物电化学性能的有力手段,但界面密度调控仍然是一个巨大的挑战。在此,通过可控硫化将 MoO /MoS 异质纳米棒封装在氮硫共掺杂碳基质中(MoO /MoS @NSC)。MoO 和 MoS 在原子水平上紧密结合,形成具有不同分布密度的 MoO /MoS 异质界面。在这些 MoO /MoS 异质界面处会引发强烈的电子相互作用,从而增强电子转移。在碱性介质中,该最佳材料表现出优异的析氢反应(HER)性能,明显优于碳覆盖的 MoS 纳米棒对照物(η:156 mV 对 232 mV)和最近报道的大多数 MoS 基异质结构。第一性原理计算揭示,在 HER 过程中,MoO /MoS 异质界面通过 O-Mo-S 电子桥极大地促进了水的解离和氢原子的吸附。此外,得益于高赝电容贡献、丰富的“离子库”样通道以及高密度 MoO /MoS 异质界面带来的低 Na 扩散势垒,该材料作为钠离子电池的阳极具有 888 mAh g 的高比容量、显著的倍率性能和 390 次循环的循环稳定性(在 0.1 A g 下)。这项工作无疑将为高性能电化学能量转换和存储系统的界面密度工程开辟道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验