Department of Chemistry, Graduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão-SE, Brazil.
Aggeu Magalhães Institute, Recife-PE, Brazil.
J Biomol Struct Dyn. 2023 Jun;41(9):3835-3846. doi: 10.1080/07391102.2022.2057361. Epub 2022 Mar 31.
Herein we describe the use of molecular docking simulations, quantitative structure-activity relationships studies and ADMETox predictions to analyse the molecular recognition of a series of 7-aryl-2,4-diaminoquinazoline derivatives on the inhibition of dihydrofolate reductase and conducted a virtual screening to discover new potential inhibitors. A quantitative structure-activity relationship model was developed using 40 compounds and two selected descriptors. These descriptors indicated the importance of pKa and molar refractivity for the inhibitory activity against DHFR. The values of R, CV and R generated by the model were 0.808, 0.766, and 0.785, respectively. The integration between QSAR, molecular docking, ADMETox analysis and molecular dynamics simulations with binding free energies calculation, yielded the compounds PC-124127620, PC-124127795 and PC-124127805 as promising candidates to DHFR inhibitors. These compounds presented high potency, good pharmacokinetics and toxicological profile. Thus, these molecules are good potential antimicrobial agent to treatment of infect disease caused by .Communicated by Ramaswamy H. Sarma.
在此,我们描述了使用分子对接模拟、定量构效关系研究和 ADMETox 预测来分析一系列 7-芳基-2,4-二氨基喹唑啉衍生物对二氢叶酸还原酶抑制的分子识别,并进行了虚拟筛选以发现新的潜在抑制剂。使用 40 种化合物和两个选定的描述符建立了定量构效关系模型。这些描述符表明了 pKa 和摩尔折射度对 DHFR 抑制活性的重要性。该模型的 R、CV 和 R 值分别为 0.808、0.766 和 0.785。QSAR、分子对接、ADMETox 分析以及与结合自由能计算相结合的分子动力学模拟,得到了化合物 PC-124127620、PC-124127795 和 PC-124127805,它们是 DHFR 抑制剂的有前途的候选物。这些化合物具有高活性、良好的药代动力学和毒理学特性。因此,这些分子是治疗 引起的感染性疾病的潜在抗菌药物。由 Ramaswamy H. Sarma 交流。