Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
Hum Genet. 2022 Nov;141(11):1749-1760. doi: 10.1007/s00439-022-02449-6. Epub 2022 Mar 31.
The interpretation of genomic variants following whole exome sequencing (WES) can be aided using human phenotype ontology (HPO) terms to standardize clinical features and predict causative genes. We performed WES on 453 patients diagnosed prior to 18 years of age and identified 114 pathogenic (P) or likely pathogenic (LP) variants in 112 patients. We utilized PhenoDB to extract HPO terms from provider notes and then used Phen2Gene to generate a gene score and gene ranking from each list of HPO terms. We assigned Phen2Gene gene rankings to 6 rank classes, with class 1 covering raw gene rankings of 1 to 10 and class 2 covering rankings from 11 to 50 out of a total of 17,126 possible gene rankings. Phen2Gene ranked causative genes into rank class 1 or 2 in 27.7% of cases and the genes in rank class 1 were all associated with well-characterized phenotypes. We found significant associations between the gene score and the number of years, since the gene was first published, the number of HPO terms with an hierarchical depth greater or equal to 11, and the number of Online Mendelian Inheritance in Man terms associated with the phenotype and gene. We conclude that genes associated with recognizable phenotypes and terms deep in the HPO hierarchy have the best chance of producing a high gene score and ranking in class 1 to 2 using Phen2Gene software with HPO terms. Clinicians and laboratory staff should consider these results when HPO terms are employed to prioritize candidate genes.
对全外显子组测序(WES)后的基因组变异进行解释,可以使用人类表型本体(HPO)术语来标准化临床特征并预测致病基因。我们对 453 名 18 岁以下确诊的患者进行了 WES,在 112 名患者中发现了 114 个致病性(P)或可能致病性(LP)变异。我们从提供者的记录中利用 PhenoDB 提取 HPO 术语,然后利用 Phen2Gene 从每个 HPO 术语列表中生成基因评分和基因排名。我们将 Phen2Gene 基因排名分配到 6 个等级类别中,其中第 1 等级涵盖了 17126 个可能的基因排名中的 1 到 10 的原始基因排名,第 2 等级涵盖了 11 到 50 的排名。Phen2Gene 将致病基因排名到 1 或 2 等级的情况占 27.7%,而 1 等级的基因均与特征明显的表型相关。我们发现基因评分与基因首次发表以来的年数、具有等级深度大于或等于 11 的 HPO 术语数量以及与表型和基因相关的在线孟德尔遗传数据库术语数量之间存在显著关联。我们得出结论,使用 Phen2Gene 软件和 HPO 术语,与可识别表型和 HPO 层次结构深处的术语相关的基因最有可能产生高分和排名在 1 到 2 等级的基因评分和排名。临床医生和实验室工作人员在使用 HPO 术语优先考虑候选基因时应考虑这些结果。