Suppr超能文献

群组损失++:深入探究深度度量学习中的群组损失

The Group Loss++: A Deeper Look Into Group Loss for Deep Metric Learning.

作者信息

Elezi Ismail, Seidenschwarz Jenny, Wagner Laurin, Vascon Sebastiano, Torcinovich Alessandro, Pelillo Marcello, Leal-Taixe Laura

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2505-2518. doi: 10.1109/TPAMI.2022.3163846. Epub 2023 Jan 6.

Abstract

Deep metric learning has yielded impressive results in tasks such as clustering and image retrieval by leveraging neural networks to obtain highly discriminative feature embeddings, which can be used to group samples into different classes. Much research has been devoted to the design of smart loss functions or data mining strategies for training such networks. Most methods consider only pairs or triplets of samples within a mini-batch to compute the loss function, which is commonly based on the distance between embeddings. We propose Group Loss, a loss function based on a differentiable label-propagation method that enforces embedding similarity across all samples of a group while promoting, at the same time, low-density regions amongst data points belonging to different groups. Guided by the smoothness assumption that "similar objects should belong to the same group", the proposed loss trains the neural network for a classification task, enforcing a consistent labelling amongst samples within a class. We design a set of inference strategies tailored towards our algorithm, named Group Loss++ that further improve the results of our model. We show state-of-the-art results on clustering and image retrieval on four retrieval datasets, and present competitive results on two person re-identification datasets, providing a unified framework for retrieval and re-identification.

摘要

深度度量学习通过利用神经网络来获得高度有区分力的特征嵌入,在聚类和图像检索等任务中取得了令人瞩目的成果,这些特征嵌入可用于将样本分组到不同类别中。许多研究致力于设计用于训练此类网络的智能损失函数或数据挖掘策略。大多数方法仅考虑小批量内的样本对或三元组来计算损失函数,该损失函数通常基于嵌入之间的距离。我们提出了分组损失(Group Loss),这是一种基于可微标签传播方法的损失函数,它在增强同一组所有样本的嵌入相似性的同时,还促进属于不同组的数据点之间的低密度区域。在“相似对象应属于同一组”的平滑假设指导下,所提出的损失针对分类任务训练神经网络,在一个类别内的样本之间强制实现一致的标记。我们为我们的算法设计了一组推理策略,名为Group Loss++,它进一步提升了我们模型的效果。我们在四个检索数据集上展示了聚类和图像检索方面的最新成果,并在两个人再识别数据集上呈现了具有竞争力的结果,为检索和再识别提供了一个统一的框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验