Suppr超能文献

深度度量学习中的排序损失

Ranked List Loss for Deep Metric Learning.

作者信息

Wang Xinshao, Hua Yang, Kodirov Elyor, Robertson Neil M

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5414-5429. doi: 10.1109/TPAMI.2021.3068449. Epub 2022 Aug 4.

Abstract

The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity and dissimilarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, ranking-motivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we unveil two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. Consequently, some useful examples are ignored and the structure is less informative. To address this, we propose to build a set-based similarity structure by exploiting all instances in the gallery. The learning setting can be interpreted as few-shot retrieval: given a mini-batch, every example is iteratively used as a query, and the rest ones compose the gallery to search, i.e., the support set in few-shot setting. The rest examples are split into a positive set and a negative set. For every mini-batch, the learning objective of ranked list loss is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution tends to be extremely compressed. In contrast, we propose to learn a hypersphere for each class in order to preserve useful similarity structure inside it, which functions as regularisation. Extensive experiments demonstrate the superiority of our proposal by comparing with the state-of-the-art methods on the fine-grained image retrieval task. Our source code is available online: https://github.com/XinshaoAmosWang/Ranked-List-Loss-for-DML.

摘要

深度度量学习(DML)的目标是学习能够捕捉数据点之间语义相似性和差异性信息的嵌入。已知在DML中使用的现有成对或三元组损失函数由于随着模型改进,大量平凡对或三元组的存在而收敛缓慢。为了改善这一点,最近提出了基于排序的结构化损失,以纳入多个示例并利用它们之间的结构化信息。它们收敛更快并实现了当前最优的性能。在这项工作中,我们揭示了现有基于排序的结构化损失的两个局限性,并提出了一种新颖的排序列表损失来解决这两个问题。首先,给定一个查询,仅纳入一小部分数据点来构建相似性结构。因此,一些有用的示例被忽略,并且该结构的信息量较少。为了解决这个问题,我们建议通过利用图库中的所有实例来构建基于集合的相似性结构。这种学习设置可以解释为少样本检索:给定一个小批次,每个示例被迭代地用作查询,其余的组成图库进行搜索,即少样本设置中的支持集。其余的示例被分成一个正集和一个负集。对于每个小批次,排序列表损失的学习目标是使查询在嵌入空间中比负集更接近正集一个余量。其次,先前的方法旨在将正对对在嵌入空间中尽可能拉近。结果,类内数据分布趋于被极度压缩。相比之下,我们建议为每个类学习一个超球面,以便在其中保留有用的相似性结构,其起到正则化的作用。广泛的实验通过在细粒度图像检索任务上与当前最优方法进行比较,证明了我们提议的优越性。我们的源代码可在线获取:https://github.com/XinshaoAmosWang/Ranked-List-Loss-for-DML。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验