Hassan Masud, Naidu Ravi, Du Jianhua, Qi Fangjie, Ahsan Md Ariful, Liu Yanju
Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States of America.
Int J Biol Macromol. 2022 May 15;207:826-840. doi: 10.1016/j.ijbiomac.2022.03.159. Epub 2022 Mar 28.
Mesoporous (~7-8 nm) biopolymer hydrogel beads (HNTs-FeNPs@Alg/β-CD) were synthesised via ionic polymerisation route to separate heavy metal ions. The adsorption capacity of HNTs-FeNPs@Alg/β-CD was higher than that of raw halloysite nano tubes (HNTs), iron nanoparticles (FeNPs), and bare alginate beads. FeNPs induce the magnetic properties of adsorbent and metal-based functional groups in and around the hydrogel beads. The mesoporous surface of the adsorbent permits access of heavy metal ions onto the polymer beads to interact with internal active sites and the mesoporous polymer network. Maximum adsorption capacities of lead (Pb), copper (Cu), cadmium (Cd), and nickel (Ni) were 21.09 mg/g, 15.54 mg/g, 2.47 mg/g, and 2.68 mg/g, respectively. HNTs-FeNPs@Alg/β-CD was able to adsorb heavy metals efficiently (75-99%) under environment-relevant concentrations (200 μg/L) from mixed metal contaminants. The adsorption and selectivity trends of heavy metals were Pb > Cu > Cd > Ni, despite electrostatic binding strength of Cd > Cu > Pb > Ni and covalent binding strength of Pb > Ni > Cu > Cd. It demonstrated that not only chemosorption but also physisorption acts as the sorption mechanism. The reduction in surface area, porosity, and pore volume of the expended adsorbent, along with sorption study results, confirmed that pore filling and intra-particle diffusion played a considerable role in removing heavy metals.
通过离子聚合路线合成了介孔(约7-8纳米)生物聚合物水凝胶珠(HNTs-FeNPs@Alg/β-CD),用于分离重金属离子。HNTs-FeNPs@Alg/β-CD的吸附容量高于天然埃洛石纳米管(HNTs)、铁纳米颗粒(FeNPs)和裸藻酸盐珠。FeNPs诱导了水凝胶珠及其周围吸附剂和金属基官能团的磁性。吸附剂的介孔表面允许重金属离子进入聚合物珠,与内部活性位点和介孔聚合物网络相互作用。铅(Pb)、铜(Cu)、镉(Cd)和镍(Ni)的最大吸附容量分别为21.09毫克/克、15.54毫克/克、2.47毫克/克和2.68毫克/克。HNTs-FeNPs@Alg/β-CD能够在环境相关浓度(200微克/升)下从混合金属污染物中高效吸附重金属(75-99%)。尽管镉、铜、铅、镍的静电结合强度为Cd>Cu>Pb>Ni,铅、镍、铜、镉的共价结合强度为Pb>Ni>Cu>Cd,但重金属的吸附和选择性趋势为Pb>Cu>Cd>Ni。这表明不仅化学吸附而且物理吸附都起吸附机制作用。膨胀吸附剂的表面积、孔隙率和孔体积的减小以及吸附研究结果证实,孔隙填充和颗粒内扩散在去除重金属方面发挥了重要作用。