Dept. Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
Biosystems. 2022 Jun;215-216:104669. doi: 10.1016/j.biosystems.2022.104669. Epub 2022 Mar 28.
Cytogenetics and genomics have completely transformed our understanding of evolutionary genome change since the early 1950s. The point of this paper is to outline some of the empirical findings responsible for that transformation. The discovery of transposable elements (TEs) in maize by McClintock, and their subsequent rediscovery in all forms of life, tell us that organisms have the inherent capacity to evolve dispersed genomic networks encoding complex cellular and multicellular adaptations. Genomic analysis confirms the role of TEs in wiring novel networks at major evolutionary transitions. TEs and other forms of repetitive DNA are also important contributors to genome regions that serve as transcriptional templates for regulatory and other biologically functional noncoding ncRNAs. The many functions documented for ncRNAs shows the concept of abundant "selfish" or "junk" DNA in complex genomes is mistaken. Natural and artificial speciation by interspecific hybridization demonstrates that TEs and other biochemical systems of genome restructuring are subject to rapid activation and can generate changes throughout the genomes of the novel species that emerge. In addition to TEs and hybrid species, cancer cells have taught us important lessons about chromothripsis, chromoplexy and other forms of non-random multisite genome restructuring. In many of these restructured genomes, alternative end-joining processes display the capacities of eukaryotes to generate novel combinations of templated and untemplated DNA sequences at the sites of break repair. Sequence innovation by alternative end-joining is widespread among eukaryotes from single cells to advanced plants and animals. In sum, the cellular and genomic capacities of eukaryotic cells have proven to be capable of executing rapid macroevolutionary change under a variety of conditions.
自 20 世纪 50 年代初以来,细胞遗传学和基因组学彻底改变了我们对进化基因组变化的理解。本文的目的是概述促成这种转变的一些经验发现。麦克林托克(McClintock)在玉米中发现转座元件(TEs),以及随后在所有生命形式中的重新发现,告诉我们生物体具有内在的进化能力,可以进化出分散的基因组网络,编码复杂的细胞和多细胞适应。基因组分析证实了 TEs 在主要进化过渡中构建新型网络的作用。TEs 和其他形式的重复 DNA 也是作为转录模板的基因组区域的重要贡献者,这些区域为调节和其他生物学功能的非编码 ncRNA 服务。ncRNA 的许多功能表明,在复杂基因组中大量存在“自私”或“垃圾”DNA 的概念是错误的。通过种间杂交进行的自然和人工物种形成表明,TEs 和其他基因组重排的生化系统容易快速激活,并可以在出现的新物种的基因组中产生变化。除了 TEs 和杂交种,癌细胞还让我们了解了关于染色质断裂、染色质复合和其他形式的非随机多部位基因组重排的重要教训。在许多这些重排的基因组中,替代末端连接过程显示了真核生物在断裂修复部位产生模板和非模板 DNA 序列新组合的能力。替代末端连接的序列创新在单细胞到高级植物和动物等真核生物中广泛存在。总之,真核细胞的细胞和基因组能力已被证明能够在各种条件下执行快速的宏观进化变化。