Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
J Mol Cell Cardiol. 2022 Jun;167:52-66. doi: 10.1016/j.yjmcc.2022.03.001. Epub 2022 Mar 28.
Mitochondrial calcium (Ca) uptake couples changes in cardiomyocyte energetic demand to mitochondrial ATP production. However, excessive Ca uptake triggers permeability transition and necrosis. Despite these established roles during acute stress, the involvement of Ca signaling in cardiac adaptations to chronic stress remains poorly defined. Changes in NCLX expression are reported in heart failure (HF) patients and models of cardiac hypertrophy. Therefore, we hypothesized that altered Ca homeostasis contributes to the hypertrophic remodeling of the myocardium that occurs upon a sustained increase in cardiac workload. The impact of Ca flux on cardiac function and remodeling was examined by subjecting mice with cardiomyocyte-specific overexpression (OE) of the mitochondrial Na/Ca exchanger (NCLX), the primary mediator of Ca efflux, to several well-established models of hypertrophic and non-ischemic HF. Cardiomyocyte NCLX-OE preserved contractile function, prevented hypertrophy and fibrosis, and attenuated maladaptive gene programs in mice subjected to chronic pressure overload. Hypertrophy was attenuated in NCLX-OE mice, prior to any decline in cardiac contractility. NCLX-OE similarly attenuated deleterious cardiac remodeling in mice subjected to chronic neurohormonal stimulation. However, cardiomyocyte NCLX-OE unexpectedly reduced overall survival in mice subjected to severe neurohormonal stress with angiotensin II + phenylephrine. Adenoviral NCLX expression limited Ca accumulation, oxidative metabolism, and de novo protein synthesis during hypertrophic stimulation of cardiomyocytes in vitro. Our findings provide genetic evidence for the contribution of Ca to early pathological remodeling in non-ischemic heart disease, but also highlight a deleterious consequence of increasing Ca efflux when the heart is subjected to extreme, sustained neurohormonal stress.
线粒体钙(Ca)摄取将心肌细胞能量需求的变化与线粒体 ATP 产生联系起来。然而,过多的 Ca 摄取会引发通透性转换和坏死。尽管在急性应激期间有这些已确立的作用,但 Ca 信号在心脏对慢性应激的适应中的参与仍未得到明确界定。在心力衰竭(HF)患者和心脏肥大模型中报道了 NCLX 表达的变化。因此,我们假设 Ca 稳态的变化导致心肌肥厚重构,这种重构发生在心脏工作量持续增加时。通过使心肌细胞特异性过表达(OE)线粒体 Na/Ca 交换器(NCLX)的小鼠,即 Ca 外排的主要介质,经受几种已建立的肥厚和非缺血性 HF 模型,研究 Ca 流对心脏功能和重构的影响。在慢性压力超负荷下,心肌细胞 NCLX-OE 保持收缩功能,防止肥大和纤维化,并减弱适应性基因程序。在心肌细胞 NCLX-OE 小鼠中,在心脏收缩功能下降之前,肥大就已经减弱。NCLX-OE 同样减轻了慢性神经激素刺激下的有害心脏重构。然而,出乎意料的是,在严重的神经激素应激下,心肌细胞 NCLX-OE 降低了 Ang II + 苯肾上腺素处理的小鼠的总生存率。腺病毒 NCLX 表达限制了 Ca 积累、氧化代谢和新蛋白质合成,在体外肥大刺激心肌细胞时。我们的研究结果为 Ca 在非缺血性心脏病早期病理重构中的作用提供了遗传证据,但也强调了当心脏受到极端、持续的神经激素应激时,增加 Ca 外排的有害后果。