Zheng Jianwei, Fu Guohua, Struppa Daniele, Abudayyeh Islam, Contractor Tahmeed, Anderson Kyle, Chu Huimin, Rakovski Cyril
Schmid College of Science and Technology, Chapman University, Orange, CA, United States.
Arrhythmia Center, Ningbo First Hospital, Zhejiang University, Ningbo, China.
Front Cardiovasc Med. 2022 Mar 11;9:809027. doi: 10.3389/fcvm.2022.809027. eCollection 2022.
Radiofrequency catheter ablation (CA) is an efficient antiarrhythmic treatment with a class I indication for idiopathic ventricular arrhythmia (IVA), only when drugs are ineffective or have unacceptable side effects. The accurate prediction of the origins of IVA can significantly increase the operation success rate, reduce operation duration and decrease the risk of complications. The present work proposes an artificial intelligence-enabled ECG analysis algorithm to estimate possible origins of idiopathic ventricular arrhythmia at a clinical-grade level accuracy.
A total of 18,612 ECG recordings extracted from 545 patients who underwent successful CA to treat IVA were proportionally sampled into training, validation and testing cohorts. We designed four classification schemes responding to different hierarchical levels of the possible IVA origins. For every classification scheme, we compared 98 distinct machine learning models with optimized hyperparameter values obtained through extensive grid search and reported an optimal algorithm with the highest accuracy scores attained on the testing cohorts.
For classification scheme 4, our pioneering study designs and implements a machine learning-based ECG algorithm to predict 21 possible sites of IVA origin with an accuracy of 98.24% on a testing cohort. The accuracy and F1-score for the left three schemes surpassed 99%.
In this work, we developed an algorithm that precisely predicts the correct origins of IVA (out of 21 possible sites) and outperforms the accuracy of all prior studies and human experts.
射频导管消融术(CA)是一种有效的抗心律失常治疗方法,仅在药物无效或有不可接受的副作用时,才对特发性室性心律失常(IVA)有I类适应症。准确预测IVA的起源可显著提高手术成功率、缩短手术时间并降低并发症风险。本研究提出一种基于人工智能的心电图分析算法,以临床级别的准确性估计特发性室性心律失常的可能起源。
从545例接受成功CA治疗IVA的患者中提取的18612份心电图记录,按比例抽样分为训练、验证和测试队列。我们设计了四种分类方案,对应于IVA可能起源的不同层次水平。对于每种分类方案,我们比较了98种不同的机器学习模型,并通过广泛的网格搜索获得了优化的超参数值,报告了在测试队列中获得最高准确率的最优算法。
对于分类方案4,我们的开创性研究设计并实施了一种基于机器学习的心电图算法,在测试队列中预测IVA起源的21个可能部位,准确率为98.24%。前三种方案的准确率和F1分数超过99%。
在这项工作中,我们开发了一种算法,能够精确预测IVA的正确起源(在21个可能部位中),并且优于所有先前研究和人类专家的准确率。