Suppr超能文献

使用卷积神经网络的心电图诊断肥厚型心肌病。

Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram.

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.

Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida.

出版信息

J Am Coll Cardiol. 2020 Feb 25;75(7):722-733. doi: 10.1016/j.jacc.2019.12.030.

Abstract

BACKGROUND

Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.

OBJECTIVES

This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).

METHODS

A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.

RESULTS

In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.

CONCLUSIONS

ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.

摘要

背景

肥厚型心肌病(HCM)是导致心源性猝死的一个不常见但很重要的原因。

目的

本研究旨在开发一种基于 12 导联心电图(ECG)的 HCM 人工智能检测方法。

方法

使用经过验证的 HCM 诊断的 2448 例患者和 51153 例年龄和性别匹配的非 HCM 对照组的数字 12 导联 ECG 训练和验证卷积神经网络(CNN)。然后,在另一个包含 612 例 HCM 和 12788 例对照的数据集上测试 CNN 检测 HCM 的能力。

结果

在合并数据集,HCM 组的平均年龄为 54.8 ± 15.9 岁,对照组为 57.5 ± 15.5 岁。在训练和验证后,验证数据集的 CNN 曲线下面积(AUC)在最优概率阈值为 11%时为 0.95(95%置信区间[CI]:0.94 至 0.97)。当将该概率阈值应用于测试数据集时,CNN 的 AUC 为 0.96(95%CI:0.95 至 0.96),敏感性为 87%,特异性为 90%。在亚组分析中,根据心电图标准诊断为左心室肥厚的患者 AUC 为 0.95(95%CI:0.94 至 0.97),心电图正常的患者 AUC 为 0.95(95%CI:0.90 至 1.00)。该模型在年轻患者中表现尤其出色(敏感性 95%,特异性 92%)。在携带和不携带肌节突变的 HCM 患者中,该模型得出的患有 HCM 的概率中位数分别为 97%和 96%。

结论

基于心电图的 HCM 人工智能检测可以达到较高的诊断性能,特别是在年轻患者中。该模型需要进一步改进和外部验证,但它可能为 HCM 筛查提供希望。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验