Suppr超能文献

基于癫痫临床经验集的原发性癫痫用药规律分析

Analysis of Medication Rule of Primary Epilepsy Based on Clinical Experience Collection of Epilepsy.

作者信息

Zhang Yu, Tong Lin, Chen Guangkun, Deng Jingpeng, Zhang Lei, Li Hongtao, Chang Pengfei

机构信息

Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

出版信息

Evid Based Complement Alternat Med. 2022 Jun 25;2022:9539944. doi: 10.1155/2022/9539944. eCollection 2022.

Abstract

OBJECTIVE

To explore and analyze the medication rule of Professor in the treatment of primary epilepsy, hoping to provide reference for the clinical treatment of primary epilepsy.

METHODS

Mining and analysis of Professor sorted out the medical cases of primary epilepsy in clinical experience collection of epilepsy, extracted the traditional Chinese medicine (TCM) prescription data in the medical cases, standardized the obtained TCM prescription data, and used the data mining function integrated by the ancient and modern medical case cloud platform V2.3.5 to carry out frequency statistics, cluster analysis, association analysis, and complex network analysis on the TCM data, and the common herbs used by Professor in the treatment of primary epilepsy, properties and classifications of commonly used herbs, pairs of commonly used herbs, and core prescriptions were obtained.

RESULTS

A total of 39 cases, 228 medical records, and 230 prescriptions data of TCM were included. A total of 96 Chinese medicinal herbs were involved, and the total frequency of medication was 3,828. High-frequency herbs include Rhizoma Gastrodiae (Tianma) (222 times), Ramulus Uncariae cum Uncis (Gouteng) (220 times), Rhizoma Acori Tatarinowii (Shichangpu) (216 times), Rhizoma Pinelliae Praeparatum (Fabanxia) (207 times), Bombyx Batryticatus (Jiangcan) (206 times), and Periostracum Cicadae (Chantui) (181 times). The main properties and flavors of commonly used Chinese medicinal herbs were sweet, bitter, and pungent, which were mainly attributed to the four meridians of liver, lung, heart, and spleen. Commonly used couplet herbs were {Periostracum Cicadae (Chantui)} ≥ {Bombyx Batryticatus (Jiangcan)}, {Rhizoma Acori Tatarinowii (Shichangpu)} ≥{ Bombyx Batryticatus (Jiangcan)}, {Radix Bupleuri (Chaihu)} ≥ {Radix Scutellariae (Huangqin)}, {Rhizoma Gastrodiae (Tianma)} ≥ {Ramulus Uncariae cum Uncis (Gouteng)}, {Rhizoma Acori Tatarinowii (Shichangpu)} ≥ {Periostracum Cicadae (Chantui)}, {Ramulus Uncariae cum Uncis (Gouteng)} ≥ {Bombyx Batryticatus (Jiangcan)}, {Bombyx Batryticatus (Jiangcan)} ≥ {Rhizoma Gastrodiae (Tianma)}, {Rhizoma Acori Tatarinowii (Shichangpu)} ≥ {Ramulus Uncariae cum Uncis (Gouteng)}, etc. The core prescription composition was based on the addition and subtraction of Tianma Gouteng decoction and Erchen decoction. The main pharmacological mechanisms of core prescriptions are mainly reflected in antioxidation, enhancing GABA efficacy, and regulating NMDA channel and sodium channel, neuroprotection, and so on.

CONCLUSION

Professor 's medication for the treatment of primary epilepsy was based on the principle of relieving wind and spasm, drying dampness and resolving phlegm, giving consideration to both Qi and blood, and harmonizing liver, lung, heart, and spleen.

摘要

目的

探讨并分析[教授姓名]治疗原发性癫痫的用药规律,以期为原发性癫痫的临床治疗提供参考。

方法

挖掘分析[教授姓名]整理的《癫痫临床经验集》中原发性癫痫医案,提取医案中的中医处方数据,对获取的中医处方数据进行标准化处理,利用古今医案云平台V2.3.5集成的数据挖掘功能,对中医数据进行频次统计、聚类分析、关联分析及复杂网络分析,得出[教授姓名]治疗原发性癫痫常用中药、常用中药的性味归经、常用药对及核心处方。

结果

共纳入39例、228份医案、230条中医处方数据。共涉及96味中药,用药总频次为3828次。高频药物有天麻(222次)、钩藤(220次)、石菖蒲(216次)、法半夏(207次)、僵蚕(206次)、蝉蜕(181次)。常用中药的主要性味为甘、苦、辛,主要归肝、肺、心、脾四经。常用药对有蝉蜕≥僵蚕,石菖蒲≥僵蚕,柴胡≥黄芩,天麻≥钩藤,石菖蒲≥蝉蜕,钩藤≥僵蚕,僵蚕≥天麻,石菖蒲≥钩藤等。核心处方组成为天麻钩藤饮合二陈汤加减。核心处方的主要药理机制主要体现在抗氧化、增强γ-氨基丁酸(GABA)功效、调节N-甲基-D-天冬氨酸(NMDA)通道及钠通道、神经保护等方面。

结论

[教授姓名]治疗原发性癫痫用药以祛风解痉、燥湿化痰、气血兼顾、调和肝肺心脾为原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c61/9252657/f078891e1bd7/ECAM2022-9539944.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验