Bello Frank Daniel, Kongsuwan Nuttawut, Hess Ortwin
School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2, Ireland.
Quantum Technology Foundation (Thailand), 98 Soi Ari, Bangkok 10110, Thailand.
Nano Lett. 2022 Apr 13;22(7):2801-2808. doi: 10.1021/acs.nanolett.1c04920. Epub 2022 Apr 1.
For a quantum Internet, one needs reliable sources of entangled particles that are compatible with measurement techniques enabling time-dependent, quantum error correction. Ideally, they will be operable at room temperature with a manageable decoherence versus generation time. To accomplish this, we theoretically establish a scalable, plasmonically based archetype that uses quantum dots (QD) as quantum emitters, known for relatively low decoherence rates near room temperature, that are excited using subdiffracted light from a near-field transducer (NFT). NFTs are a developing technology that allow rasterization across arrays of qubits and remarkably generate enough power to strongly drive energy transitions on the nanoscale. This eases the fabrication of QD media, while efficiently controlling picosecond-scale dynamic entanglement of a multiqubit system that approaches maximum fidelity, along with fluctuation between tripartite and bipartite entanglement. Our strategy radically increases the scalability and accessibility of quantum information devices while permitting fault-tolerant quantum computing using time-repetition algorithms.
对于量子互联网而言,需要有可靠的纠缠粒子源,这些粒子源要与能够实现随时间变化的量子纠错的测量技术兼容。理想情况下,它们应能在室温下运行,且退相干与生成时间的关系易于管理。为实现这一点,我们从理论上建立了一种基于表面等离子体激元的可扩展原型,该原型使用量子点(QD)作为量子发射器,量子点在室温附近具有相对较低的退相干率,通过近场换能器(NFT)发出的亚衍射光对其进行激发。NFT是一种正在发展的技术,它允许对量子比特阵列进行光栅扫描,并能显著产生足够的功率来强力驱动纳米尺度上的能量跃迁。这简化了量子点介质的制造,同时有效控制了多量子比特系统的皮秒级动态纠缠,该纠缠接近最大保真度,以及三方和两方纠缠之间的波动。我们的策略从根本上提高了量子信息设备的可扩展性和可及性,同时允许使用时间重复算法进行容错量子计算。