Suppr超能文献

在可编程纳米光子芯片上实现具有大量光子的量子电路。

Quantum circuits with many photons on a programmable nanophotonic chip.

机构信息

Xanadu, Toronto, Ontario, Canada.

National Institute of Standards and Technology, Boulder, CO, USA.

出版信息

Nature. 2021 Mar;591(7848):54-60. doi: 10.1038/s41586-021-03202-1. Epub 2021 Mar 3.

Abstract

Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms. Present-day photonic quantum computers have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware-software system for executing many-photon quantum circuit operations using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. The system enables remote users to execute quantum algorithms that require up to eight modes of strongly squeezed vacuum initialized as two-mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and photon number-resolving readout on all outputs. Detection of multi-photon events with photon numbers and rates exceeding any previous programmable quantum optical demonstration is made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra and graph similarity. These demonstrations validate the platform as a launchpad for scaling photonic technologies for quantum information processing.

摘要

随着量子计算在实际应用中的兴趣日益浓厚,可用于执行量子算法的可编程机器的可用性也大幅增加。目前的光子量子计算机要么是非确定性操作,要么是光子数量和速率低,要么是固定的随机门序列。在这里,我们引入了一个用于执行多光子量子电路操作的全栈软硬件系统,该系统使用集成纳米光子学:可编程芯片,在室温下运行,并与全自动控制系统接口。该系统使远程用户能够执行量子算法,这些算法需要多达八个模式的强压缩真空,初始化为两个模式压缩状态,在单个时间模式中,一个完全通用和可编程的四模式干涉仪,以及所有输出的光子数分辨读出。通过强压缩和高采样率,实现了多光子事件的探测,其光子数和速率超过了任何以前的可编程量子光学演示。我们验证了设备输出的非经典性,并使用该平台进行了三个量子算法的原理验证演示:高斯玻色子采样、分子振动光谱和图相似性。这些演示验证了该平台是光子技术量子信息处理的一个起点。

相似文献

3
Quantum computational advantage with a programmable photonic processor.用量子计算优势与可编程光子处理器。
Nature. 2022 Jun;606(7912):75-81. doi: 10.1038/s41586-022-04725-x. Epub 2022 Jun 1.
7
A universal programmable Gaussian boson sampler for drug discovery.用于药物发现的通用可编程高斯玻色子采样器。
Nat Comput Sci. 2023 Oct;3(10):839-848. doi: 10.1038/s43588-023-00526-y. Epub 2023 Oct 12.
8
Continuous-variable multipartite entanglement in an integrated microcomb.集成微梳中的连续变量多体纠缠
Nature. 2025 Mar;639(8054):329-336. doi: 10.1038/s41586-025-08602-1. Epub 2025 Feb 19.

引用本文的文献

1
A complexity transition in displaced Gaussian Boson sampling.位移高斯玻色子采样中的复杂性转变。
npj Quantum Inf. 2025;11(1):119. doi: 10.1038/s41534-025-01062-5. Epub 2025 Jul 9.
3
Programmable photonic unitary circuits for light computing.用于光计算的可编程光子酉电路。
Nanophotonics. 2025 Feb 14;14(10):1429-1449. doi: 10.1515/nanoph-2024-0602. eCollection 2025 May.
4
Moiré cavity quantum electrodynamics.莫尔腔量子电动力学。
Sci Adv. 2025 May 23;11(21):eadv8115. doi: 10.1126/sciadv.adv8115. Epub 2025 May 21.
5
Large-scale cluster quantum microcombs.大规模簇量子微梳
Light Sci Appl. 2025 Apr 16;14(1):164. doi: 10.1038/s41377-025-01812-2.
8
Chip-integrated quantum signature network over 200 km.芯片集成量子签名网络覆盖200公里。
Light Sci Appl. 2025 Mar 4;14(1):108. doi: 10.1038/s41377-025-01775-4.
9
Continuous-variable multipartite entanglement in an integrated microcomb.集成微梳中的连续变量多体纠缠
Nature. 2025 Mar;639(8054):329-336. doi: 10.1038/s41586-025-08602-1. Epub 2025 Feb 19.

本文引用的文献

1
Experimental Gaussian Boson sampling.实验性高斯玻色子采样
Sci Bull (Beijing). 2019 Apr 30;64(8):511-515. doi: 10.1016/j.scib.2019.04.007. Epub 2019 Apr 2.
3
Molecular docking with Gaussian Boson Sampling.基于高斯玻色子采样的分子对接
Sci Adv. 2020 Jun 5;6(23):eaax1950. doi: 10.1126/sciadv.aax1950. eCollection 2020 Jun.
5
Benchmarking an 11-qubit quantum computer.对一台11量子比特量子计算机进行基准测试。
Nat Commun. 2019 Nov 29;10(1):5464. doi: 10.1038/s41467-019-13534-2.
6
Quantum supremacy using a programmable superconducting processor.用量子计算优越性使用可编程超导处理器。
Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23.
7
Generation of time-domain-multiplexed two-dimensional cluster state.生成时域复用二维簇态。
Science. 2019 Oct 18;366(6463):373-376. doi: 10.1126/science.aay2645.
8
Deterministic generation of a two-dimensional cluster state.确定性生成二维簇态。
Science. 2019 Oct 18;366(6463):369-372. doi: 10.1126/science.aay4354.
10
Encoding a qubit in a trapped-ion mechanical oscillator.将量子比特编码到囚禁离子机械振荡器中。
Nature. 2019 Feb;566(7745):513-517. doi: 10.1038/s41586-019-0960-6. Epub 2019 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验