Pierucci Debora, Mahmoudi Aymen, Silly Mathieu, Bisti Federico, Oehler Fabrice, Patriarche Gilles, Bonell Frédéric, Marty Alain, Vergnaud Céline, Jamet Matthieu, Boukari Hervé, Lhuillier Emmanuel, Pala Marco, Ouerghi Abdelkarim
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.
Synchrotron-SOLEIL, Université Paris-Saclay, Saint-Aubin, BP48, F91192 Gif sur Yvette, France.
Nanoscale. 2022 Apr 14;14(15):5859-5868. doi: 10.1039/d2nr00458e.
Two-dimensional materials (2D) arranged in hybrid van der Waals (vdW) heterostructures provide a route toward the assembly of 2D and conventional III-V semiconductors. Here, we report the structural and electronic properties of single layer WSe grown by molecular beam epitaxy on Se-terminated GaAs(111)B. Reflection high-energy electron diffraction images exhibit sharp streaky features indicative of a high-quality WSe layer produced vdW epitaxy. This is confirmed by in-plane X-ray diffraction. The single layer of WSe and the absence of interdiffusion at the interface are confirmed by high resolution X-ray photoemission spectroscopy and high-resolution transmission microscopy. Angle-resolved photoemission investigation revealed a well-defined WSe band dispersion and a high p-doping coming from the charge transfer between the WSe monolayer and the Se-terminated GaAs substrate. By comparing our results with local and hybrid functionals theoretical calculation, we find that the top of the valence band of the experimental heterostructure is close to the calculations for free standing single layer WSe. Our experiments demonstrate that the proximity of the Se-terminated GaAs substrate can significantly tune the electronic properties of WSe. The valence band maximum (VBM, located at the K point of the Brillouin zone) presents an upshift of about 0.56 eV toward the Fermi level with respect to the VBM of the WSe on graphene layer, which is indicative of high p-type doping and a key feature for applications in nanoelectronics and optoelectronics.
以混合范德华(vdW)异质结构排列的二维材料(2D)为二维和传统III-V族半导体的组装提供了一条途径。在此,我们报道了通过分子束外延在硒端接的GaAs(111)B上生长的单层WSe的结构和电子性质。反射高能电子衍射图像呈现出尖锐的条纹特征,表明通过vdW外延生长出了高质量的WSe层。这通过面内X射线衍射得到了证实。高分辨率X射线光电子能谱和高分辨率透射显微镜证实了WSe的单层结构以及界面处不存在相互扩散。角分辨光电子能谱研究揭示了明确的WSe能带色散以及来自WSe单层与硒端接的GaAs衬底之间电荷转移的高p型掺杂。通过将我们的结果与局域和杂化泛函理论计算进行比较,我们发现实验异质结构价带顶接近独立单层WSe的计算结果。我们的实验表明,硒端接的GaAs衬底的接近可以显著调节WSe的电子性质。价带最大值(VBM,位于布里渊区的K点)相对于石墨烯层上WSe的VBM向费米能级上移约0.56 eV,这表明高p型掺杂,是纳米电子学和光电子学应用的关键特征。