Centre de Nanosciences et de Nanotechnologies, CNRS Univ. Paris-Sud, Université Paris-Saclay , C2N - Marcoussis, 91460 Marcoussis, France.
Synchrotron-SOLEIL , Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France.
Nano Lett. 2016 Jul 13;16(7):4054-61. doi: 10.1021/acs.nanolett.6b00609. Epub 2016 Jun 16.
Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.
二维层状 MoS2 由于其高灵敏度而在纳米电子和光电子器件中具有巨大的应用潜力,这种高灵敏度是由于其体相尺寸减小到单层时发生从间接带隙到直接带隙的转变。在这里,我们对由单层 MoS2 和石墨烯形成的范德华异质结构的能带排列和相对论性质进行了全面的研究。通过微拉曼光谱、高分辨率 X 射线光电子能谱(HRXPS)和扫描高分辨率透射电子显微镜(STEM/HRTEM)对高质量、尖锐的 MoS2-石墨烯界面进行了表征。此外,还通过角分辨光电子能谱(ARPES)对 MoS2/石墨烯范德华异质结构单层的直接能带结构进行了测定,阐明了界面处低能电子动力学的掺杂、费米速度、杂化和能带偏移等基本特征。我们发现,在费米能级附近,石墨烯表现出强韧、几乎完美的无带隙和 n 型掺杂的狄拉克锥,并且没有检测到 MoS2 向石墨烯的显著电荷转移掺杂。然而,在较大的结合能处,石墨烯的能带结构发生了变化,因为观察到几个微带隙的出现。这些微带隙是由 MoS2 和石墨烯层晶格的叠加产生的超晶格势。