Mahmoudi Aymen, Bouaziz Meryem, Chapuis Niels, Kremer Geoffroy, Chaste Julien, Romanin Davide, Pala Marco, Bertran François, Fèvre Patrick Le, Gerber Iann C, Patriarche Gilles, Oehler Fabrice, Wallart Xavier, Ouerghi Abdelkarim
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France.
Univ. Lille, CNRS, Centrale Lille, JUNIA ISEN, Univ. Polytechnique Hauts de France, UMR 8520-IEMN F59000 Lille, France.
ACS Nano. 2023 Nov 14;17(21):21307-21316. doi: 10.1021/acsnano.3c05818. Epub 2023 Oct 19.
The growth of bilayers of two-dimensional (2D) materials on conventional 3D semiconductors results in 2D/3D hybrid heterostructures, which can provide additional advantages over more established 3D semiconductors while retaining some specificities of 2D materials. Understanding and exploiting these phenomena hinge on knowing the electronic properties and the hybridization of these structures. Here, we demonstrate that a rhombohedral-stacked bilayer (AB stacking) can be obtained by molecular beam epitaxy growth of tungsten diselenide (WSe) on a gallium phosphide (GaP) substrate. We confirm the presence of 3R-stacking of the WSe bilayer structure using scanning transmission electron microscopy (STEM) and micro-Raman spectroscopy. Also, we report high-resolution angle-resolved photoemission spectroscopy (ARPES) on our rhombohedral-stacked WSe bilayer grown on a GaP(111)B substrate. Our ARPES measurements confirm the expected valence band structure of WSe with the band maximum located at the Γ point of the Brillouin zone. The epitaxial growth of WSe/GaP(111)B helps to understand the fundamental properties of these 2D/3D heterostructures, toward their implementation in future devices.
二维(2D)材料双层在传统三维(3D)半导体上生长,会形成2D/3D混合异质结构,这种结构在保留2D材料某些特性的同时,相较于更为成熟的3D半导体还具有额外优势。理解和利用这些现象取决于了解这些结构的电子特性和杂化情况。在此,我们证明通过在磷化镓(GaP)衬底上进行二硒化钨(WSe)的分子束外延生长,可以获得菱面体堆叠双层(AB堆叠)。我们使用扫描透射电子显微镜(STEM)和显微拉曼光谱证实了WSe双层结构中3R堆叠的存在。此外,我们还报告了在生长于GaP(111)B衬底上的菱面体堆叠WSe双层上进行的高分辨率角分辨光电子能谱(ARPES)研究。我们的ARPES测量结果证实了WSe预期的价带结构,其能带最大值位于布里渊区的Γ点。WSe/GaP(111)B的外延生长有助于理解这些2D/3D异质结构的基本特性,推动其在未来器件中的应用。