Suppr超能文献

人工智能方法估算奶牛甲烷排放量。

Artificial Intelligence Approach for Estimating Dairy Methane Emissions.

机构信息

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

出版信息

Environ Sci Technol. 2022 Apr 19;56(8):4849-4858. doi: 10.1021/acs.est.1c08802. Epub 2022 Apr 1.

Abstract

California's dairy sector accounts for ∼50% of anthropogenic CH emissions in the state's greenhouse gas (GHG) emission inventory. Although California dairy facilities' location and herd size vary over time, atmospheric inverse modeling studies rely on decade-old facility-scale geospatial information. For the first time, we apply artificial intelligence (AI) to aerial imagery to estimate dairy CH emissions from California's San Joaquin Valley (SJV), a region with ∼90% of the state's dairy population. Using an AI method, we process 316,882 images to estimate the facility-scale herd size across the SJV. The AI approach predicts herd size that strongly (>95%) correlates with that made by human visual inspection, providing a low-cost alternative to the labor-intensive inventory development process. We estimate SJV's dairy enteric and manure CH emissions for 2018 to be 496-763 Gg/yr (mean = 624; 95% confidence) using the predicted herd size. We also apply our AI approach to estimate CH emission reduction from anaerobic digester deployment. We identify 162 large (90th percentile) farms and estimate a CH reduction potential of 83 Gg CH/yr for these large facilities from anaerobic digester adoption. The results indicate that our AI approach can be applied to characterize the manure system (, use of an anaerobic lagoon) and estimate GHG emissions for other sectors.

摘要

加州的奶制品行业占该州温室气体排放清单中人为 CH 排放的约 50%。尽管加州奶制品设施的位置和牛群规模随时间而变化,但大气反演模型研究依赖于数十年前的设施规模地理空间信息。我们首次应用人工智能 (AI) 对航空影像进行分析,以估算加利福尼亚州圣华金河谷 (SJV) 的奶制品 CH 排放量,该地区拥有全州约 90%的奶制品。我们使用人工智能方法处理 316,882 张图像,以估算整个 SJV 的设施规模牛群数量。人工智能方法预测的牛群规模与人工目视检查结果高度相关(>95%),为劳动密集型清单编制过程提供了一种低成本替代方案。我们使用预测的牛群规模估算了 2018 年 SJV 奶制品肠道和粪便 CH 排放量为 496-763 Gg/yr(平均值=624;95%置信区间)。我们还应用我们的 AI 方法估算了厌氧消化器部署的 CH 减排量。我们确定了 162 个大型(第 90 个百分位数)农场,并估计这些大型设施采用厌氧消化器可减少 83 Gg CH/yr 的 CH 排放量。结果表明,我们的 AI 方法可用于描述粪肥系统(,使用厌氧塘)并估算其他部门的温室气体排放。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验