Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
Chemosphere. 2022 Jul;299:134443. doi: 10.1016/j.chemosphere.2022.134443. Epub 2022 Mar 29.
The design of efficient cultivation strategies to produce bioplastics from biogas is crucial for the implementation of this biorefinery process. In this work, biogas-based polyhydroxybutyrate (PHB) production and CH biodegradation performance was investigated for the first time in a stirred tank bioreactor inoculated with Methylocystis parvus str. OBBP. Decreasing nitrogen loading rates in continuous mode and alternating feast:famine regimes of 24 h-cycles, and alternating feast:famine regimes of 24 h:24 h and 24 h:48 h were tested. Continuous N feeding did not support an effective PHB production despite the occurrence of nitrogen limiting conditions. Feast-famine cycles of 24 h:24 h (with 50% stoichiometric nitrogen supply) supported the maximum PHB production (20 g-PHB m d) without compromising the CH-elimination capacity (25 g m h) of the system. Feast:famine ratios ≤1:2 entailed the deterioration of process performance at stoichiometric nitrogen inputs ≤60%.
设计高效的培养策略来从沼气生产生物塑料对于实施这种生物炼制过程至关重要。在这项工作中,首次在接种了 Methylocystis parvus str. OBBP 的搅拌罐生物反应器中研究了基于沼气的聚羟基丁酸酯 (PHB) 生产和 CH 生物降解性能。在连续模式下降低氮负荷率,并交替进行 24 小时周期的丰:饥饿和 24 小时:48 小时和 24 小时:24 小时的丰:饥饿循环。尽管存在氮限制条件,但连续供氮并不支持有效的 PHB 生产。24 小时:24 小时的丰:饥饿循环(用 50%的化学计量氮供应)支持最大 PHB 生产(20 g-PHB m d),而不会损害系统的 CH 消除能力(25 g m h)。在化学计量氮输入≤60%时,丰:饥饿比≤1:2 会导致工艺性能恶化。