Suppr超能文献

利用机器学习预测活性炭的鞋跟堆积量。

Prediction of heel build-up on activated carbon using machine learning.

机构信息

University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada.

University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada.

出版信息

J Hazard Mater. 2022 Jul 5;433:128747. doi: 10.1016/j.jhazmat.2022.128747. Epub 2022 Mar 25.

Abstract

Determining the long-term performance of adsorbents is crucial for the design of air treatment systems. Heel buildup i.e., the accumulation of non-desorbed/ non-desorbable adsorbates and their reaction byproducts, on the surface/pores of the adsorbent is a primary cause of adsorption performance deterioration. However, due to the complexity of heel buildup mechanisms, theoretical models have yet to be developed to map the extent of heel buildup to the adsorption/desorption parameters. In this work, two machine learning (ML) algorithms (XGBoost and neural network (NN)) were applied to predict volatile organic compounds (VOCs) cyclic heel buildup on activated carbons (ACs) by considering the adsorbent characteristics, adsorbate properties and regeneration conditions. The NN algorithm showed better performance in prediction of cyclic heel buildup (R = 0.94) than XGBoost (R = 0.81). To analyze interaction between heel buildup and adsorbent characteristics, adsorbate properties, and regeneration conditions, partial dependency plots were generated. The proposed ML-based heel prediction methods can be ultimately used to: (i) optimize adsorption/desorption operating conditions to minimize heel buildup on activated carbon in cyclic adsorption/desorption processes and (ii) quickly screen various adsorbents for efficient adsorption/desorption of a particular family of VOCs by excluding adsorbents prone to high heel formation.

摘要

确定吸附剂的长期性能对于空气处理系统的设计至关重要。吸附剂表面/孔隙中吸附质的积累和不可解吸/不可解吸吸附物及其反应副产物的积累(即脚跟堆积)是导致吸附性能恶化的主要原因。然而,由于脚跟堆积机制的复杂性,尚未开发出理论模型来将脚跟堆积程度映射到吸附/解吸参数上。在这项工作中,应用了两种机器学习 (ML) 算法(XGBoost 和神经网络 (NN))来预测挥发性有机化合物 (VOC) 在活性炭 (AC) 上的周期性脚跟堆积,同时考虑了吸附剂特性、吸附质性质和再生条件。NN 算法在预测周期性脚跟堆积方面表现出更好的性能(R = 0.94),优于 XGBoost(R = 0.81)。为了分析脚跟堆积与吸附剂特性、吸附质性质和再生条件之间的相互作用,生成了部分依赖图。基于 ML 的脚跟预测方法最终可用于:(i) 优化吸附/解吸操作条件,以最小化周期性吸附/解吸过程中活性炭上的脚跟堆积;(ii) 通过排除易于形成高脚跟的吸附剂,快速筛选各种吸附剂以有效吸附/解吸特定族的 VOCs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验