Rahmani Keivan, Yang Yang, Foster Ethan Paul, Tsai Ching-Ting, Meganathan Dhivya Pushpa, Alvarez Diego D, Gupta Aayush, Cui Bianxiao, Santoro Francesca, Bloodgood Brenda L, Yu Rose, Forro Csaba, Jahed Zeinab
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Department of Chemistry, Stanford University, Stanford, CA, USA.
Nat Commun. 2025 Jan 14;16(1):657. doi: 10.1038/s41467-024-55571-6.
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput. However, accessing intracellular potentials with NEAs remains challenging. This study presents an AI-supported technique that leverages thousands of synchronous eAP and iAP pairs from stem-cell-derived cardiomyocytes on NEAs. Our analysis revealed strong correlations between specific eAP and iAP features, such as amplitude and spiking velocity, indicating that extracellular signals could be reliable indicators of intracellular activity. We developed a physics-informed deep learning model to reconstruct iAP waveforms from extracellular recordings recorded from NEAs and Microelectrode arrays (MEAs), demonstrating its potential for non-invasive, long-term, high-throughput drug cardiotoxicity assessments. This AI-based model paves the way for future electrophysiology research across various cell types and drug interactions.
细胞内电生理学在神经科学、心脏病学和药理学中对于研究细胞的电特性至关重要。传统方法如膜片钳技术精确但通量低且具有侵入性。纳米电极阵列(NEA)通过实现高通量的细胞内和细胞外动作电位(iAP和eAP)同步记录提供了一种有前景的替代方法。然而,使用NEA获取细胞内电位仍然具有挑战性。本研究提出了一种人工智能支持的技术,该技术利用来自NEA上干细胞衍生的心肌细胞的数千对同步eAP和iAP。我们的分析揭示了特定eAP和iAP特征(如幅度和尖峰速度)之间的强相关性,表明细胞外信号可能是细胞内活动的可靠指标。我们开发了一种基于物理知识的深度学习模型,用于从NEA和微电极阵列(MEA)记录的细胞外记录中重建iAP波形,证明了其在非侵入性、长期、高通量药物心脏毒性评估中的潜力。这种基于人工智能的模型为未来跨各种细胞类型和药物相互作用的电生理学研究铺平了道路。