Perras Frédéric A, Carnahan Scott L, Lo Wei-Shang, Ward Charles J, Yu Jiaqi, Huang Wenyu, Rossini Aaron J
Ames Laboratory, U.S. DOE, Ames, Iowa 50011, USA.
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
J Chem Phys. 2022 Mar 28;156(12):124112. doi: 10.1063/5.0086530.
Solid-state nuclear magnetic resonance can be enhanced using unpaired electron spins with a method known as dynamic nuclear polarization (DNP). Fundamentally, DNP involves ensembles of thousands of spins, a scale that is difficult to match computationally. This scale prevents us from gaining a complete understanding of the spin dynamics and applying simulations to design sample formulations. We recently developed an ab initio model capable of calculating DNP enhancements in systems of up to ∼1000 nuclei; however, this scale is insufficient to accurately simulate the dependence of DNP enhancements on radical concentration or magic angle spinning (MAS) frequency. We build on this work by using ab initio simulations to train a hybrid model that makes use of a rate matrix to treat nuclear spin diffusion. We show that this model can reproduce the MAS rate and concentration dependence of DNP enhancements and build-up time constants. We then apply it to predict the DNP enhancements in core-shell metal-organic-framework nanoparticles and reveal new insights into the composition of the particles' shells.
利用一种称为动态核极化(DNP)的方法,未成对电子自旋可以增强固态核磁共振。从根本上讲,DNP涉及数千个自旋的集合,这一规模在计算上很难匹配。这种规模阻碍了我们对自旋动力学的全面理解,也无法通过模拟来设计样品配方。我们最近开发了一种从头算模型,能够计算多达约1000个原子核系统中的DNP增强;然而,这个规模不足以准确模拟DNP增强对自由基浓度或魔角旋转(MAS)频率的依赖性。我们在此工作基础上,通过从头算模拟训练一个利用速率矩阵处理核自旋扩散的混合模型。我们表明,该模型可以重现DNP增强的MAS速率和浓度依赖性以及建立时间常数。然后,我们将其应用于预测核壳金属有机框架纳米颗粒中的DNP增强,并揭示了对颗粒壳层组成的新见解。