Hong Yu-Heng, Hsu Wen-Cheng, Tsai Wei-Cheng, Huang Yao-Wei, Chen Shih-Chen, Kuo Hao-Chung
Semiconductor Research Center, Hon Hai Research Institute, Taipei, 11492, Taiwan.
Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
Nanoscale Res Lett. 2022 Apr 2;17(1):41. doi: 10.1186/s11671-022-03680-w.
Internet of Things (IoT) technology is prosperous for the betterment of human well-being. With the expeditious needs of miniature functional devices and systems for adaptive optics and light manipulation at will, relevant sensing techniques are thus in the urgent stage of development. Extensive developments in ultrathin artificial structures, namely metasurfaces, are paving the way for the next-generation devices. A bunch of tunable and reconfigurable metasurfaces with diversified catalogs of mechanisms have been developed recently, enabling dynamic light modulation on demand. On the other hand, monolithic integration of metasurfaces and light-emitting sources form ultracompact meta-devices as well as exhibiting desired functionalities. Photon-matter interaction provides revolution in more compact meta-devices, manipulating light directly at the source. This study presents an outlook on this merging paradigm for ultracompact nanophotonics with metasurfaces, also known as metaphotonics. Recent advances in the field hold great promise for the novel photonic devices with light emission and manipulation in simplicity.
物联网(IoT)技术蓬勃发展,旨在改善人类福祉。随着对用于自适应光学和随意光操纵的微型功能设备及系统的迫切需求,相关传感技术正处于亟待发展的阶段。超薄人工结构,即超表面的广泛发展,正在为下一代设备铺平道路。最近已经开发出了一系列具有多种机制的可调谐和可重构超表面,能够按需进行动态光调制。另一方面,超表面与发光源的单片集成形成了超紧凑的元器件,并展现出所需的功能。光子与物质的相互作用为更紧凑的元器件带来了变革,可直接在光源处操纵光。本研究对这种将超紧凑纳米光子学与超表面相结合的范式进行了展望,这种范式也被称为元光子学。该领域的最新进展为实现具有简单发光和光操纵功能的新型光子器件带来了巨大希望。