Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.
Chem Rev. 2022 Oct 12;122(19):15414-15449. doi: 10.1021/acs.chemrev.1c01029. Epub 2022 May 12.
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing . For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
未来的多功能物理和化学系统以及紧凑型生物传感器所依赖的技术基础将采用密集排布的、可转换和可调谐的电路。多年来,等离子体被认为是亚波长光学的唯一可用平台,但最近出现的共振超光子学领域可能通过在高折射率介电纳米粒子和超表面中利用共振,为纳米科学提供一个通用的实用平台。在这里,我们讨论了最近出现的超光子学领域,并描述了它与材料科学和化学的联系。为了实现可调谐性,超光子学采用了多种最近受到关注的材料,如聚合物、钙钛矿、过渡金属二卤化物和相变材料。这使得通过多极共振和连续体束缚态的物理来实现超系统和超表面的多种功能,从而实现对光的高效时空控制。我们预计这些概念将在纳米激光器、可调谐的元器件、元化学以及新一代化学和生物超紧凑感测设备的设计中得到扩展应用。