Wellcome/EPSRC Centre for Interventional and Surgical Sciences and Centre for Medical Image Computing, UCL, London, UK.
Division of Surgery and Interventional Science, UCL, London, UK.
Int J Comput Assist Radiol Surg. 2022 Aug;17(8):1461-1468. doi: 10.1007/s11548-022-02605-3. Epub 2022 Apr 2.
The registration of Laparoscopic Ultrasound (LUS) to CT can enhance the safety of laparoscopic liver surgery by providing the surgeon with awareness on the relative positioning between critical vessels and a tumour. In an effort to provide a translatable solution for this poorly constrained problem, Content-based Image Retrieval (CBIR) based on vessel information has been suggested as a method for obtaining a global coarse registration without using tracking information. However, the performance of these frameworks is limited by the use of non-generalisable handcrafted vessel features.
We propose the use of a Deep Hashing (DH) network to directly convert vessel images from both LUS and CT into fixed size hash codes. During training, these codes are learnt from a patient-specific CT scan by supplying the network with triplets of vessel images which include both a registered and a mis-registered pair. Once hash codes have been learnt, they can be used to perform registration with CBIR methods.
We test a CBIR pipeline on 11 sequences of untracked LUS distributed across 5 clinical cases. Compared to a handcrafted feature approach, our model improves the registration success rate significantly from 48% to 61%, considering a 20 mm error as the threshold for a successful coarse registration.
We present the first DH framework for interventional multi-modal registration tasks. The presented approach is easily generalisable to other registration problems, does not require annotated data for training, and may promote the translation of these techniques.
腹腔镜超声(LUS)与 CT 的配准可以通过让外科医生了解关键血管和肿瘤之间的相对位置,从而提高腹腔镜肝手术的安全性。为了解决这个约束条件较差的问题,我们提出了基于内容的图像检索(CBIR)方法,该方法基于血管信息,用于在不使用跟踪信息的情况下获得全局粗略配准。然而,这些框架的性能受到非泛化手工制作血管特征的限制。
我们提出使用深度哈希(DH)网络直接将来自 LUS 和 CT 的血管图像转换为固定大小的哈希码。在训练过程中,通过向网络提供包括已配准和配准错误对在内的血管图像三胞胎,从特定于患者的 CT 扫描中学习这些代码。一旦学习了哈希码,就可以使用 CBIR 方法进行配准。
我们在 5 个临床病例的 11 组未跟踪 LUS 序列上测试了 CBIR 管道。与手工制作特征的方法相比,我们的模型将注册成功率从 48%显著提高到 61%,考虑到 20mm 的误差作为成功的粗略注册的阈值。
我们提出了第一个用于介入式多模态配准任务的 DH 框架。该方法易于推广到其他配准问题,不需要训练的注释数据,可能会促进这些技术的转化。