Zhang Hanyuan, Bulathsinhala Sandun, Davidson Brian R, Clarkson Matthew J, Ramalhinho João
UCL Hawkes Institute, Department of Medical Physics and Biomedical Engineering, UCL, UK.
Division of Surgery and Interventional Science, UCL, UK.
Int J Comput Assist Radiol Surg. 2025 Jul;20(7):1461-1469. doi: 10.1007/s11548-025-03418-w. Epub 2025 May 23.
Registration of computed tomography (CT) to laparoscopic video images is vital to enable augmented reality (AR), a technology that holds the promise of minimising the risk of complications during laparoscopic liver surgery. Although several solutions have been presented in the literature, they always rely on an accurate initialisation of the registration that is either obtained manually or automatically estimated on very specific views of the liver. These limitations pose a challenge to the clinical translation of AR.
We propose the use of a content-based image retrieval (CBIR) framework to obtain an automatic robust initialisation to the registration. Instead of directly registering video and CT, we render a dense set of possible views of the liver from CT and extract liver contour features. To reduce feature maps to lower dimension vectors, we use a deep hashing (DH) network that is trained in a triplet scheme. Registration is obtained by matching the intra-operative image hashing encoding to the closest encodings found in the pre-operative renderings.
We validate our method on synthetic and real data from a phantom and real patient data from eight surgeries. Phantom experiments show that registration errors acceptable for an initial registration are obtained if sufficient pre-operative solutions are considered. In seven out of eight patients, the method is able to obtain a clinically relevant alignment.
We present the first work to adapt DH to the CT to video registration problem. Our results indicate that this framework can effectively replace manual initialisations in multiple views, potentially increasing the translation of these techniques.
将计算机断层扫描(CT)与腹腔镜视频图像进行配准对于实现增强现实(AR)至关重要,AR技术有望降低腹腔镜肝脏手术期间并发症的风险。尽管文献中已经提出了几种解决方案,但它们总是依赖于配准的精确初始化,该初始化要么手动获得,要么在肝脏的非常特定视图上自动估计。这些限制对AR的临床转化构成了挑战。
我们建议使用基于内容的图像检索(CBIR)框架来获得配准的自动鲁棒初始化。我们不是直接对视频和CT进行配准,而是从CT渲染出一组密集的肝脏可能视图,并提取肝脏轮廓特征。为了将特征图简化为低维向量,我们使用在三元组方案中训练的深度哈希(DH)网络。通过将术中图像哈希编码与术前渲染中找到的最接近编码进行匹配来获得配准。
我们在来自模拟体模的合成数据和真实数据以及来自八台手术的真实患者数据上验证了我们的方法。模拟体模实验表明,如果考虑足够的术前解决方案,则可以获得初始配准可接受的配准误差。在八名患者中的七名中,该方法能够获得临床相关的对齐。
我们提出了第一项将DH应用于CT到视频配准问题的工作。我们的结果表明,该框架可以有效地替代多视图中的手动初始化,可能会增加这些技术的转化。