Suppr超能文献

基于通路交互分析探讨阿尔茨海默病的自噬相关预后基因。

Exploring autophagy-related prognostic genes of Alzheimer's disease based on pathway crosstalk analysis.

机构信息

College of Information Engineering, Shanghai Maritime University, Shanghai, China.

出版信息

Bosn J Basic Med Sci. 2022 Sep 16;22(5):751-771. doi: 10.17305/bjbms.2021.7019.

Abstract

Recent studies have shown that different signaling pathways are involved in the pathogenesis of Alzheimer's disease (AD), with complex molecular connections existing between these pathways. Autophagy is crucial for the degradation and production of pathogenic proteins in AD, and it shows link with other AD-related pathways. However, current methods for identifying potential therapeutic targets for AD are primarily based on single-gene analysis or a single signal pathway, both of which are somewhat limited. Finding other methods is necessary for providing novel underlying AD therapeutic targets. Therefore, given the central role of autophagy in AD and its interplay with its pathways, we aimed to identify prognostic genes related to autophagy within and between these pathways based on pathway crosstalk analysis. The method of pathway analysis based on global influence (PAGI) was applied to find the feature mRNAs involved in the crosstalk between autophagy and other AD-related pathways. Subsequently, the weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression module of feature mRNAs and differential lncRNAs. Finally, based on 2 autophagy-related crosstalk genes (CD40 and SMAD7), we constructed a prognosis model by multivariate Cox regression, which could predict the overall survival of AD patients with medium-to-high accuracy. In conclusion, we provided an effective method for extracting autophagy-related significant genes based on pathway crosstalk in AD. We found the biomarkers valuable to the AD prognosis, which may also play an essential role in the development and treatment of AD.

摘要

最近的研究表明,不同的信号通路参与阿尔茨海默病(AD)的发病机制,这些通路之间存在复杂的分子联系。自噬对于 AD 中致病性蛋白的降解和产生至关重要,并且与其他 AD 相关通路存在关联。然而,目前用于鉴定 AD 潜在治疗靶点的方法主要基于单基因分析或单个信号通路,这两种方法都有些局限性。需要寻找其他方法,为 AD 的潜在治疗靶点提供新的思路。因此,鉴于自噬在 AD 中的核心作用及其与其他通路的相互作用,我们旨在基于通路串扰分析,鉴定与自噬相关的预后基因,这些基因存在于通路内部和通路之间。我们应用基于全局影响的通路分析(PAGI)方法来寻找自噬与其他 AD 相关通路串扰中的特征 mRNAs。随后,我们使用加权基因共表达网络分析(WGCNA)构建特征 mRNAs 和差异长非编码 RNA 的共表达模块。最后,基于 2 个自噬相关串扰基因(CD40 和 SMAD7),我们通过多变量 Cox 回归构建了预后模型,该模型可以准确预测 AD 患者的总生存期。总之,我们提供了一种基于 AD 通路串扰提取自噬相关显著基因的有效方法。我们找到了对 AD 预后有价值的生物标志物,这些标志物可能在 AD 的发展和治疗中也发挥着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/710a/9519154/7c3f68728e98/BJBMS-22-751-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验