Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
Cognition. 2022 Aug;225:105112. doi: 10.1016/j.cognition.2022.105112. Epub 2022 Mar 30.
Exponential growth is frequently underestimated, an error that can have a heavy social cost in the context of epidemics. To clarify its origins, we measured the human capacity (N = 521) to extrapolate linear and exponential trends in scatterplots. Four factors were manipulated: the function underlying the data (linear or exponential), the response modality (pointing or venturing a number), the scale on the y axis (linear or logarithmic), and the amount of noise in the data. While linear extrapolation was precise and largely unbiased, we observed a consistent underestimation of noisy exponential growth, present for both pointing and numerical responses. A biased ideal-observer model could explain these data as an occasional misperception of noisy exponential graphs as quadratic curves. Importantly, this underestimation bias was mitigated by participants' math knowledge, by using a logarithmic scale, and by presenting a noiseless exponential curve rather than a noisy data plot, thus suggesting concrete avenues for interventions.
指数增长经常被低估,这种错误在传染病流行的情况下可能会带来沉重的社会代价。为了澄清其起源,我们测量了人类(N=521)在散点图中推断线性和指数趋势的能力。我们操纵了四个因素:数据的基础函数(线性或指数)、响应方式(指向或猜测数字)、y 轴的刻度(线性或对数)和数据中的噪声量。虽然线性外推是精确的且基本上没有偏差,但我们观察到对噪声指数增长的一致低估,这对于指向和数值响应都存在。一个有偏差的理想观察者模型可以将这些数据解释为偶尔将噪声指数图错误地视为二次曲线。重要的是,这种低估偏差可以通过参与者的数学知识、使用对数刻度以及呈现无噪声的指数曲线而不是噪声数据图来减轻,从而为干预措施提供了具体途径。