Suppr超能文献

人类能够对图表进行心理回归吗?散点图感知中的准确性和偏差。

Can humans perform mental regression on a graph? Accuracy and bias in the perception of scatterplots.

作者信息

Ciccione Lorenzo, Dehaene Stanislas

机构信息

University Paris Sciences Lettres (PSL), 60 rue Mazarine, 75006 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.

Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.

出版信息

Cogn Psychol. 2021 Aug;128:101406. doi: 10.1016/j.cogpsych.2021.101406. Epub 2021 Jun 29.

Abstract

Despite the widespread use of graphs, little is known about how fast and how accurately we can extract information from them. Through a series of four behavioral experiments, we characterized human performance in "mental regression", i.e. the perception of statistical trends from scatterplots. When presented with a noisy scatterplot, even as briefly as 100 ms, human adults could accurately judge if it was increasing or decreasing, fit a regression line, and extrapolate outside the original data range, for both linear and non-linear functions. Performance was highly consistent across those three tasks of trend judgment, line fitting and extrapolation. Participants' linear trend judgments took into account the slope, the noise, and the number of data points, and were tightly correlated with the t-test classically used to evaluate the significance of a linear regression. However, they overestimated the absolute value of the regression slope. This bias was inconsistent with ordinary least squares (OLS) regression, which minimizes the sum of square deviations, but consistent with the use of Deming regression, which treats the x and y axes symmetrically and minimizes the Euclidean distance to the fitting line. We speculate that this fast but biased perception of scatterplots may be based on a "neuronal recycling" of the human visual capacity to identify the medial axis of a shape.

摘要

尽管图表被广泛使用,但对于我们从图表中提取信息的速度和准确性,人们却知之甚少。通过一系列四项行为实验,我们刻画了人类在“心理回归”方面的表现,即从散点图中感知统计趋势。当呈现一个有噪声的散点图时,即使仅持续100毫秒,成年人类也能够准确判断它是上升还是下降,拟合一条回归线,并在线性和非线性函数的原始数据范围之外进行外推。在趋势判断、线拟合和外推这三项任务中,表现高度一致。参与者的线性趋势判断考虑了斜率、噪声和数据点数量,并且与传统上用于评估线性回归显著性的t检验紧密相关。然而,他们高估了回归斜率的绝对值。这种偏差与普通最小二乘法(OLS)回归不一致,OLS回归使平方偏差之和最小化,但与戴明回归的使用一致,戴明回归对称地处理x轴和y轴,并使到拟合线的欧几里得距离最小化。我们推测,这种对散点图快速但有偏差的感知可能基于人类视觉识别形状中轴线能力的“神经元再利用”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验