Department of Thyroid and Breast Diagnosis and Treatment Center, Weifang Hospital of Traditional Chinese Medicine, No. 1055 Weizhou Road, Kuiwen District, Weifang City, 261000, Shandong Province, China.
Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, No. 288 Shengli East Street, Kuiwen District, Weifang City, 261000, Shandong Province, China.
Eur J Surg Oncol. 2022 Jun;48(6):1264-1271. doi: 10.1016/j.ejso.2022.03.016. Epub 2022 Mar 23.
In order to avoid excessive treatment of thyroid nodules in the clinic, it is necessary to find a simple and practical analysis method to comprehensively and accurately reflect benign or malignant thyroid nodules. This study aimed to construct and validate a comprehensive and reliable network-based predictive model using a variety of imaging and laboratory criteria for thyroid nodules to stratify the risk of malignancy prior to surgery.
We retrospectively analyzed data from patients who underwent surgical treatment for thyroid nodules at the Thyroid and Breast Diagnosis and Treatment Center of Weifang Hospital of Traditional Chinese Medicine between January 2018 and December 2020. Binary logical regression analysis was performed to predict whether nodules were malignant or benign. The developmental dataset included 457 patients (January 2018-December 2020). The validation set included separate data points (n = 225, January 2018-December 2020).
In this study, criteria that showed significant predictive value for malignant nodules included TI-RADS: 4b (p = 0.065); Bethesda IV, Bethesda V, Bethesda VI (P < 0.0001); BRAF mutation (P < 0.0001); Calcitonin>5 pg/ml (p = 0.0037); and FNA-Tg>30 ng/ml (p = 0.0003). A 10-grade risk scoring system was developed. The risk of malignancy risk ranged from 2.06% to 100% and was positively associated with increasing risk grade. The areas under the receiver-operating characteristic curve of the development and validation sets were 0.972 and 0.946, respectively.
A simple, comprehensive and reliable web-based predictive model was designed using a variety of imaging and laboratory criteria to stratify thyroid nodules by probability of malignancy.
为了避免临床中对甲状腺结节的过度治疗,有必要找到一种简单实用的分析方法,全面准确地反映甲状腺良恶性结节。本研究旨在构建和验证一种基于网络的综合可靠的预测模型,该模型使用多种影像学和实验室标准对甲状腺结节进行分层,以在术前对恶性肿瘤的风险进行分层。
我们回顾性分析了 2018 年 1 月至 2020 年 12 月期间在潍坊市中医院甲状腺乳腺诊治中心接受甲状腺结节手术治疗的患者数据。采用二项逻辑回归分析预测结节是恶性还是良性。开发数据集包括 457 例患者(2018 年 1 月至 2020 年 12 月)。验证集包括单独的数据点(n=225,2018 年 1 月至 2020 年 12 月)。
在这项研究中,对恶性结节具有显著预测价值的标准包括 TI-RADS:4b(p=0.065);Bethesda IV、Bethesda V、Bethesda VI(P<0.0001);BRAF 突变(P<0.0001);降钙素>5pg/ml(p=0.0037);和 FNA-Tg>30ng/ml(p=0.0003)。建立了 10 级风险评分系统。恶性风险范围为 2.06%至 100%,与风险等级的增加呈正相关。开发集和验证集的受试者工作特征曲线下面积分别为 0.972 和 0.946。
本研究设计了一种简单、全面、可靠的基于网络的预测模型,使用多种影像学和实验室标准对甲状腺结节进行分层,以评估恶性肿瘤的可能性。