Suppr超能文献

乳腺癌腋窝淋巴结转移的术前综合风险评估:基于网络的预测模型的开发与验证

Preoperative comprehensive risk estimation for axillary lymph node metastasis in breast cancer: development and verification of a network-based prediction model.

作者信息

Sun Baoqi, Shao Guangdong, Shi Mingming, Sun Zenggang, Wang Xiaolin, Song Yining, Sun Zheng, Jin Zhanjie, Xu Chunhong, Li Guolou

机构信息

Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, No. 288 Shengli East Street, Kuiwen District, Weifang City, 261000, Shandong Province, China.

Department of Thyroid and Breast Diagnosis and Treatment Center, Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, No. 1055 Weizhou Road, Kuiwen District, Weifang City, 261000, Shandong Province, China.

出版信息

Sci Rep. 2025 Jan 9;15(1):1524. doi: 10.1038/s41598-024-84904-0.

Abstract

To prevent the overaggressive treatment of axillary lymph nodes (ALNs) in breast cancer, it is necessary to develop a convenient analysis method that accurately and comprehensively reflects whether ALNs are metastatic or nonmetastatic. We retrospectively analyzed data from patients who underwent surgery for breast cancer at the Weifang Hospital of Traditional Chinese Medicine between January 2019 and June 2023. Binary logistic regression analysis was used to predict the metastasis status of ALNs. The developmental data set included 531 patients (January 2019-June 2023). The validation set included separate data points (n = 178, January 2019-June 2023). Multivariate analysis revealed that positive findings on breast physical examination, ultrasound grades of ALNs, lymphovascular invasion, and Her-2 status had significant predictive value for metastatic ALNs. Based on these findings, a 5-grade risk scoring system and 3-level management recommendations were developed. The risk of metastasis ranged from 11.25 to 93.46%, which was positively correlated with an increase in risk grade. The areas under the curve of the development and validation sets were 0.895 and 0.865, respectively. Ultimately, a convenient, accurate and comprehensive web-based predictive model was constructed using various breast cancer clinical, imaging and pathological criteria to stratify ALNs according to the metastasis probability.

摘要

为避免对乳腺癌腋窝淋巴结(ALNs)进行过度积极的治疗,有必要开发一种便捷的分析方法,准确、全面地反映ALNs是否发生转移。我们回顾性分析了2019年1月至2023年6月期间在潍坊市中医医院接受乳腺癌手术患者的数据。采用二元逻辑回归分析预测ALNs的转移状态。开发数据集包括531例患者(2019年1月至2023年6月)。验证集包括单独的数据点(n = 178,2019年1月至2023年6月)。多因素分析显示,乳腺体格检查阳性结果、ALNs超声分级、淋巴管侵犯和Her-2状态对转移性ALNs具有显著预测价值。基于这些发现,制定了一个5级风险评分系统和3级管理建议。转移风险范围为11.25%至93.46%,与风险等级增加呈正相关。开发集和验证集的曲线下面积分别为0.895和0.865。最终,利用各种乳腺癌临床、影像和病理标准构建了一个便捷、准确且全面的基于网络的预测模型,以根据转移概率对ALNs进行分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48ef/11717927/0b54086e762e/41598_2024_84904_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验